In the present study, we have described a well-defined cohort of patients suffering shock upon arrival to the ED. The results reveal that shock is frequently encountered in the ED and is associated with a substantial mortality.
We found the prevalence of hypotensive shock to be 0.4 % (1646/438,191), corresponding to a mean annual incidence of 63.2/100,000 pyar (95 % CI: 60.2–66.3). The overall IR of registered shock increased during 2009–2011 compared to the previous years. This increase could be attributed to the introduction of the ADAPT algorithm in our ED in 2009 by which the identification of critically ill patients became more standardized, as compared to the years before. We found shock to be most common among the elderly with a higher incidence among men. The gender specific difference in the IR could be due to the fact that men in general have more comorbidity than women. Whether increased awareness across etiologies during this period (surviving sepsis campaign and percutaneous coronary intervention of myocardial infarction) is of importance remains to be explored. However, the present finding suggests shock to be as frequent as an ED presentation of ST-elevation myocardial infarction [20]. As opposed to myocardial infarction, research investigating characteristics of ED shock have been limited [21].
This cohort further demonstrates shock as a critical finding carrying a 7-, and 90-day mortality of 23.1 and 40.7 %, respectively. Although it is well accepted, that shock associates poor prognosis, the mortality reported here exceeds previous reported estimates of shock in the ICU and ED setting [4, 5, 22, 23]. Comparing mortality outcomes depends largely on setting of research and the underlying etiology. Prior studies typically evaluate outcomes in patients with a single etiology of shock, whereby extrapolation to an open general ED is somewhat arbitrary. Although prognosis have improved across etiologies of shock, mortality continuous to be critically high [1]. Studies investigating non-traumatic shock report inhospital mortality of 16–25 % [4, 5, 22] in the ED, whereas mortality estimates in the ICU setting is 38 % [23]. For patients with septic- or cardiogenic shock mortality is 32 % [24] and 34 % [25], respectively. Traumatic shock carries a somewhat lower mortality of 16 % [26]. The estimates from our study should be interpreted in the context of the undifferentiated population from which they are derived, as opposed to the selected patient populations in the ICU’s or specialized units with well-defined etiologies.
In the current study, severity of shock (based on the number of organ failures) and age appears to be the most important determinants of clinical outcome within the first week after presentation. Conditional upon surviving the first week, the underlying comorbid burden is an important factor for death within 8–90 days as well as the number of organ failures and age. These findings are in line with previous studies investigating critical illness and outcomes, suggesting multiple organ dysfunction and multiple comorbidities to depict poor outcomes [27].
Despite technical improvement in diagnostics and advances in treatment, during the past decades, shock is still a critical finding in the acute medical care and ED setting. Steps to improve outcome have been implemented in which acute medical personal identify life-threatening conditions, mobilize critical resources, and initiate relevant therapy. Within specific groups of critically ill populations, goal directed team approaches have been successful (trauma, cardiac arrest, and sepsis). Patient suffering undifferentiated shock may benefit from a similar approach [28]. However, reducing time to recognition is a critical aspect of caring for patients suffering shock. Clinical recognition of shock is traditionally based on vital sign abnormalities. Measurement of SBP and heart rate is a commonly used clinical practice to assess the circulatory state of acutely ill patients. The presence of hypotension often signifies overt shock and even a transient presentation of hypotension should alert the clinician to warrant careful attention and evaluation for the presence of shock. Future studies should refine the diagnostic process of recognizing shock in the ED. Moreover, exploring baseline etiological characteristics of undifferentiated shock at presentation in the ED are needed.
Study strengths and limitations
In this study, we analyzed a large cohort of acutely ill, undifferentiated patients arriving to the ED. We had no loss to follow-up do to the unique personal registration numbers in Denmark. The Danish public healthcare system, with a complete, independently and prospectively recorded medical history, made it possible to identify all included patients in the population-based registries. We were hereby able to compute robust estimates on incidence, all-course mortality and predictive factors for death.
The blood pressure measurements were registered prospectively and as a routine documentation and triage in the ED population. In order to avoid possible overestimation of the IR, we excluded patient with residency outside the catchment area and a previously reported admission with SBP ≤100 mmHg in the years 1998–99. To minimize bias from repeated measurements we used the first contact with shock, within the study period.
There are limitations and possible bias that must be kept in mind when interpreting our findings. This was a single-center, retrospective study from a University Hospital ED serving a well-defined catchment area and is the primary and only hospital in this area of Denmark. The results may, however, not necessarily be generalized to other hospitals. Although our ED is the only on serving this part of Denmark, we are not able to adjust for patients living in our catchment area, who have had contact to other hospitals. However, in order minimize this proportion (n = 516, Fig. 1) we excluded patients living in municipalities outside of our ED catchment.
An important limitation is the proportion of patients who were not included as a SBP was not measured upon arrival (n = 273,774). These patients suffered minor complaints and the triaging nurses did not measure SBP based on a clinical judgment. These circumstances also apply for the proportion of patients, who did not have blood test performed upon arrival (n = 698). However, the retrospective data at hand are a reflection of the everyday procedures in our ED and not necessarily collected for research purposes.
We defined hypotension as SBP ≤100 mmHg, based on increasing evidence supporting a higher threshold, as opposed to the traditional 90 mmHg [11, 12]. We used the first recorded SBP value registered and did not have the possibility to examine individual dynamic trends by serial measurements. Although a more detailed definition of hypotension taking into account a patient’s baseline blood pressure as well as repeated measurements in the ED would be ideal, it was not feasible in this study. However, a single measurement approach is a common clinical applied triage method in emergency medicine settings.
Another important limitation is the number of organ failures defining our cohort. Metabolic failure was not included, as arterial punctures were not systematically collected. Moreover, respiratory frequencies and Glasgow Coma Scale were not consistently registered, whereby organ failures related to the respiratory system, and failure of the central nervous system were not included. We used a Shock Index ≥1 to define cardiovascular failure, as this index has been shown to prognosticate outcome across several etiologies of shock and critical illnesses [18, 29–36]. Ideally, cardiac output measurements would have been desirable but not feasible based on the present design. As not all variables for assessing organ failure were available, the incidence rate and the mortality outcomes should be interpreted bearing this in mind.
Furthermore, we acknowledge the presence of a physician in the prehospital setting (MECU) (from 2006 and onwards) could induce referral bias, as certain “high-risk” patients are prone to be transported directly from the pre-hospital setting to the operational theater or ICU, and thereby by-pass the ED. Moreover, in the period 2000–2008 (prior to the implementation of the ADAPT algorithm) blood pressure and blood test were taken only if the acute care ED personal deemed it appropriate whereby our outcomes could be susceptible to selection bias.
Lastly, a significant proportion of patients were evaluated in the ED and either discharged, died or admitted to the ICU (Table 2). The later could be susceptible to information bias, as the registration of ICU admission directly from the ED was not consistently documented during the period of observation. Although limited, we had missing values on covariates; ICD-codes (2 patients) and HR (40 patients).