Egberink RE, Otten HJ, Ijzerman MJ, van Vugt AB, Doggen M. Trauma team activation varies across Dutch emergency departments: a national survey. Scan J Trauma, Resus, Emerg Med. 2015;23(100):1–8.
Google Scholar
Lerner EB, Willenbring BD, Pirallo RG, Brasel K, Cady CE, Colella MR, et al. A consensus-based criterion standard for trauma center need. J Trauma Acute Care Surg. 2014;76:1157–63.
Article
PubMed
Google Scholar
German Socitey of Trauma Surgery. [S3 guidelines polytrauma/treatment of the severely injured]. Berlin. 2016. http://www.awmf.org/uploads/tx_szleitlinien/012-019l_S3_Polytrauma_Schwerverletzten-Behandlung_2017-08.pdf. Accessed 10 July 2017.
Smith J, Caldwell E, Sugrue M. Difference in trauma team activation criteria between hospitals within the same region. Emerg Med Australas. 2005;17(5–6):480–7.
Article
PubMed
Google Scholar
Larsen K, Uleberg O, Skogvoll E. Differences in trauma team activation criteria among Norwegian hospitals. Scand J Trauma Resusc Emerg Med. 2010;18(1):21.
Article
PubMed
PubMed Central
Google Scholar
Pitchford L, Smith J. Differences in trauma team activation criteria used by hospitals in the south west peninsula. Emerg Med J. 2007;24(5):372–3.
Article
PubMed
PubMed Central
Google Scholar
Kuehne CA, Müller T, Ruchholtz S, Roewer N, Wurmb T. [Interdisciplinary emergency room management and priority adapted treatment management of the severely injured]. Notfallmedizin up2date. 2009;4:285–296.
Gennarelli T. The abbreviated injury scale - 1990 revision. Des Plaines, IL: American Association for Automotive Medicine (AAAM); 1990.
Baker SP, O'Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187–96.
Article
CAS
PubMed
Google Scholar
Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir. 1976;34:45–55.
Article
CAS
PubMed
Google Scholar
Lefering R. Development and validation of the revised injury severity classification score for severely injured patients. Eur J Trauma Emerg Surg. 2009;5(35):437–47.
Article
Google Scholar
Rotondo MF, Cribari C, Smith RS. Resources for optimal care of the injured patient 2014. Committee on trauma of the American College of Surgeons. 2014.
Google Scholar
MacKenzie EJ, Rivara FP, Jurkovich GJ, Nathens AB, Frey KP, Egleston BL, et al. A national evaluation of the effect of trauma-center care on mortality. N Engl J Med. 2006;354(4):366–78.
Article
CAS
PubMed
Google Scholar
Peng J, Xiang H. Trauma undertriage and overtriage rates: are we using the wrong formulas? Am J Emerg Med. 2016;34(11):2191–2.
Article
PubMed
Google Scholar
Lerner EB, Shah MN, Swor R, Cushman JT, Guse CE, Brasel K, et al. Comparison of the 1999 and 2006 trauma triage guidelines: where do patients go? Prehosp Emerg Care. 2011;15(1):12–7.
Article
PubMed
Google Scholar
Lerner EB, Shah A, Cushman JT, Swor R, Guse CE, Brasel K, et al. Does meachanism of injury predict trauma center need? Prehosp Emerg Care. 2011;15(4):518–25.
Article
PubMed
PubMed Central
Google Scholar
Lehmann R, Brounts L, Lesperance K, Eckert M, Casey L, Beekly A, et al. A simplified set of trauma triage criteria to safely reduce overtriage. A prospective study. Arch Surg. 2009;144(9):853–8.
Article
PubMed
Google Scholar
Dehli T, Fredriksen K, Osbakk SA, Bartnes K. Evaluation of a university hospital trauma team activation protocol. Scand J Trauma Resusc Emerg Med. 2011;19:18.
Article
PubMed
PubMed Central
Google Scholar
Bouzat P, Ageron FX, Brun J, Levrat A, Berthet M, Rancurel E, et al. A regional trauma system to optimize the pre-hospital triage of trauma patients. Crit Care. 2015;19(1):111.
Article
PubMed
PubMed Central
Google Scholar
Staudenmayer K, Wang NE, Weiser TG, Maggio P, Mackersie RC, Spain D, et al. The triage of injured patients: mechanism of injury, regardless of injury severity, determines hospital destination. Am Surg. 2016;82(4):356–61.
PubMed
Google Scholar
Newgard CD, Fu R, Zive D, Rea T, Malveau S, Daya M et al. Prospective validation of the National Field Triage Guidelines for identifying seriously injured persons. J Am Coll Surg 2016;222(2):146–158.
Falcone RA, Haas L, King E, Moody S, Crow J, Moss A. A multicenter prospective analysis of pediatric trauma activation criteria routinely used in addition to the six criteria of the American College of Surgeons. J Trauma Acute Care Surg. 2012;73
Anazodo AN, Murthi SB, Frank MK, Hu PF, Hartsky L, Imle PC, et al. Assessing trauma care provider judgement in the prediction of need for life-saving interventions. Injury. 2015;46:791–7.
Article
PubMed
Google Scholar
Hamada SR, Gauss T, Duchateau FX, Truchot J, Harrois A, Raux M, et al. Evaluation of the performance of French physician-staffed emergency medical service in the triage of major trauma patients. J Trauma Acute Care Surg. 2014;76(6):1476–83.
Article
PubMed
Google Scholar
Rehn M, Eken T, Krüger A, Steen P, Skaga N, Lossius HM. Precision of field triage in patients brought to a trauma Centre after introducing trauma team activation guidelines. Scand J Trauma Resusc Emerg Med. 2009;17(1):1.
Article
PubMed
PubMed Central
Google Scholar
Fitzharris M, Stevenson M, Middleton P, Sinclair G. Adherence with the pre-hospital triage protocol in the transport of injured patients in an urban setting. Injury. 2012;43:1368–76.
Article
PubMed
Google Scholar
Escobar MA, Morris CJ. Using a multidisciplinary and evidence-based approach to decrease undertriage and overtriage of pediatric trauma patients. J Pediatr Surg. 2016;51(9):1518–25.
Article
PubMed
Google Scholar
Norwood SH, McAuley CE, Berne JD, Vallina VL, Creath RG, McLarty J. A prehospital Glasgow coma scale score<=14 accurately predicts the need for full trauma team actvation and patient hospitalisation after motor vehicle collisions. J Trauma. 2002;53:503–7.
Article
PubMed
Google Scholar
Xiang H, Wheeler KK, Groner JI, Shi J, Haley KJ. Untertriage of major trauma patients in the US emergency departments. Am J Emerg Med. 2014;32:997–1004.
Article
PubMed
Google Scholar
Newgard CD, Hsia RY, Mann NC, Schmidt T, Sahni R, Bulger EM, et al. The trade-offs in field trauma triage: a multi-reion assessment of accuracy metrics and volume shifts associated with different triage strategies. J Trauma Acute Care Surg. 2013;74(5):1298–306.
PubMed
PubMed Central
Google Scholar
Newgard CD, Richardson D, Holmes JF, Rea TD, Hsia RY, Mann NC, et al. Physiologic field triage criteria for identifying seriously injured older adults. Prehosp Emerg Care. 2014;18(4):461–70.
Article
PubMed
PubMed Central
Google Scholar
Brown JB, Forsythe RM, Stassen NA, Peitzman AB, Billiar TR, Sperry JL, et al. Evidence-based improvement of the National Trauma triage protocol: the Glasgow coma scale versus Glasgow coma scale motor subscale. J Trauma Acute Care Surg. 2014;77(1):95–102.
Article
PubMed
PubMed Central
Google Scholar
Uleberg O, Vinjevoll OP, Eriksson U, Aadahl P, Skogvoll E. Overtriage in trauma - what are the causes? Acta Anaesthesiol Scand. 2007;51(9):1178–83.
CAS
PubMed
Google Scholar
Shawhan RR, McVay DP, Casey L, Spears T, Steele SR, Martin MJ. A simplified trauma triage system safely reduces overtriage and improves provider satisfaction: a prospective study. Am J Surg. 2015;209(5):856–63.
Article
PubMed
Google Scholar
Davidson GH, Rivara FP, Mack CD, Kaufman R, Jurkovic GJ, Bulger EM. Validation of prehospital trauma triage criteria for motor vehicle collisions. J Trauma Acute Care Surg. 2014;76:755–61.
Article
PubMed
Google Scholar
Brown JB, Stassen NA, Bankey PE, Sangosanya AT, Cheng JD, Gestring ML. Mechanism of injury and special consideration criteria still matter: an evaluation of the National Trauma Triage Protocol. J Trauma. 2011;70(1):38–45.
Article
PubMed
Google Scholar
Schoell SL, Doud AN, Weaver AA, Barnard RT, Meredith JW, Stitzel JD, et al. Predicting patients that require care at a trauma center: analysis of injuries and other factors. Injury. 2015;46:558–63.
Article
PubMed
Google Scholar
Scerbo M, Radhakrishnan H, Cotton B, Dua A, Del Junco D, Wade C, et al. Pre-hospital triage of trauma patients using the random forest computer algorithm. J Surg Res. 2014;187(2):371–6.
Article
PubMed
Google Scholar