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Extracorporeal membrane oxygenation
mitigates myocardial injury and improves
survival in porcine model of ventricular
fibrillation cardiac arrest
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Abstract

Introduction: Despite decades of improved strategy in conventional cardiopulmonary resuscitation (CCPR), survival
rates of favorable neurological outcome after cardiac arrest (CA) remains poor. It is indicated that the survival rate of
successful resuscitation of extracorporeal membrane oxygenation (ECMO) is superior to that of CCPR. But the effect
of ECMO in heart is unclear. We aimed to investigate whether ECMO produces cardiac protection by ameliorating
post-ischemia reperfusion myocardial injury and myocardial apoptosis.

Methods: After undergoing 8-min untreated ventricle fibrillation (VF) and 6-min basic life support, 20 male pigs
were ultimately used in this study and randomly divided into two groups: CCPR group (n = 10) and extracorporeal
CPR (ECPR) group (n=10). Hemodynamics and blood samples were obtained at baseline and 1, 2, 4, and 6 h during
resuscitation. The successfully resuscitated pigs were sacrificed at 6 h after return of spontaneous circulation (ROSC),
and the hearts were removed and analyzed under electron microscopy, and immunohistochemistry, quantitative
real-time polymerase chain reaction, and immunofluorescence staining assay were performed to evaluate
myocardial injury and myocardial apoptosis.

Results: There were no significant differences at basic hemodynamic status between the two groups. The survival
rate of ECPR was significantly higher than CCPR group (10/10 [100%] vs. 4/10 [40%)], P = 0.04). Compared to CCPR
group, ECPR group exhibited a better outcome in hemodynamic function. Cardiac function was significantly
impaired after ROSC in both groups, but left ventricular ejection fraction (LVEF) was significantly elevated in ECPR
group than CCPR group. The expression of myocardial injury biomarkers (CK-MB, cTNI, H-FABP), endothelial injury
biomarker (sP-selectin), and cardiac function biomarker (BNP) were remarkably increased after ROSC in both groups,
but low levels in ECPR group than in CCPR group. Cardiomyocytes injury was attenuated in ECPR group under
transmission electron microscopy (TEM). Typical apoptotic nuclei of cardiomyocytes were significantly reduced and
oxidative damage were attenuated in ECPR group.

Conclusions: During prolonged VF-induced CA, ECPR contributes to improving hemodynamics, attenuating
myocardial ischemia-reperfusion injury, ameliorating myocardial ultra structure, improving cardiac function, and
elevating survival rate by preventing oxidative damage, regulating energy metabolism, inhibiting cardiomyocyte
apoptosis.
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Introduction

Despite decades of improved strategy in conventional
cardiopulmonary resuscitation (CCPR), survival rates of
favorable neurological outcome after cardiac arrest (CA)
remains poor [1-6]. The estimated survival rates to hos-
pital discharge with good neurological recovery range
from 7.4 to 13.5% for adults with in-hospital CA (IHCA)
[2, 6] and 3.2 to 7.3% for those with out-of-hospital CA
(OHCA) [1, 3], respectively. With the development of
medical technology and advanced devices, extracorpor-
eal CPR (ECPR) by veno-arterial extracorporeal mem-
brane oxygenation (ECMO) is increasingly applied as a
rescue therapy for patients resuscitated from CA, and
exhibits a higher return of spontaneous circulation
(ROSC), improves cardiac function and leads to a favor-
able neurologically intact survival to hospital discharge
compared to CCPR [7-11]. As the target organ of CPR,
the recovery of spontaneous beat and function of the
heart are very crucial for successful resuscitation after
CA. ECPR offers the blood reperfusion and oxygen sup-
ply of vital organs during CA and provides a key bridge
and time span for therapy decision. However, ECMO
in cardioprotection after CA is still lack of evidence.
Therefore, this study was designed to investigate the
underlying cardioprotection and its mechanism of
ECPR in a porcine model of prolonged ventricular
fibrillation (VF) CA. We hypothesized that ECPR
could attenuate myocardial injury and endothelial
damage of post-resuscitation, improve cardiac func-
tion, reduce the apoptosis of cardiomyocytes and
increase short-term survival rate.

Methods

This study was approved by the Institutional Animal
Care and Use Committee of the Capital Medical
University and performed at the Beijing Chao-Yang
Hospital Affiliated to the Capital Medical University. All
protocols strictly conformed to the National Research
Council’s 1996 Guide for the Care and Use of Labora-
tory Animals.

Animal preparation

Twenty male pigs aged 11-13 months, with a mean body
weight of 35.13 + 5.57 kg were applied in this study and
randomly divided into two groups: CCPR group (treated
with CCPR after CA, n=10) and ECPR group (treated
with ECMO after CA, n=10). Animal preparation was
discribed in Additional file 1.

Establishment of ECMO

A 14Fr Biomedicus venous drainage cannula (Medtronic
Perfusion Systems, Minneapolis, MN, USA) was inserted
into the left femoral artery, and another 12 Fr Biomedi-
cus arterial cannula was advanced into the left internal
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jugular vein for ECMO. The VA-ECMO circuit was
primed by heparinized normal saline (5.0 U/mL) to avoid
clotting of the cannulas. The VA-ECMO was driven by a
centrifugal pump (ROTAFLOW Console, Maquet) and
the water-circulating heat exchanger (Heater-Cooler
Unit HCU 30, Maquet) was placed at a temperature of
34°C. Pump speeds were place at a rate of 50 mL/kg/
min at the beginning, and were adjusted to optimize
flow and mean arterial blood pressure during ECPR. An
initial 500 mL bolus of normal saline and colloidal fluid
were infused intravenously, followed by continuous infu-
sion of 200-500 mL/h to compensate for fluid loss.

Experimental protocol
Experimental protocol was discribed in Additional file 1.
The detailed experimental protocol is showed in Fig. 1.

Outcomes

The primary outcome of successful resuscitation was
ROSC, and the secondary endpoints were the successful
weaning of ECMO and 6-h short-term survival. Success-
ful weaning was defined as a stable mean aortic pressure
(MAP) > 65 mmHg that could be maintained with no
ECMO flow.

Hemodynamic measurements

Hemodynamic variables, including heart rate (HR), MAP,
central venous pressure (CVP), CO, CPP using the Swan-
Ganz catheter were continuously measured. CPP was
defined as the difference between the diastolic aortic
pressure and the diastolic right atrial pressure. CO was
determined using thermodilution method by injections of
10 mL ice-cold saline, and the CO was calculated as the
average value of three consecutive measurements. These
parameters were measured at baseline before induction of
the VF, and 1 h after ROSC (ROSC 1 h), ROSC 2 h, ROSC
4'h, and ROSC 6 h after ECPR and CCPR.

Measurements of cardiac function by echocardiography
Echocardiography was performed by an ultrasonic
doctor who didn’t participate in the experiment, and
measurements were taken at baseline and at ROSC 1, 2,
4, 6h, respectively. A 2- or 4-chamber long-axis view
was obtained using a Hewlett-Packard Sonos 2500
echocardiographic system (Hewlett-Packard, Andover,
Mass) with a 5.5/7.5-Hz biplane Doppler transesopha-
geal echocardiographic transducer and a 4-way flexure.
Left ventricular end-systolic and end-diastolic volumes
were calculated by the disk method (Acoustic Quantifi-
cation Technology; Hewlett- Packard). These parameters
were used to determine left ventricular ejection fraction
(LVEE).
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Fig. 1 Outline of the experimental protocol. VF, ventricular fibrillation; CCPR, conventional cardiopulmonary resuscitation; ECMO, extracorporeal
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Sample collection

Blood samples were collected at regular time intervals
(at baseline, 1, 2, 4, 6 h during resuscitation) from the
right femoral artery for measurement of cardiac bio-
markers, and were placed in heparinized sterile tubes
and centrifuged at 3000 r/min for 10 min, and samples
with visible hemolysis were discarded. Plasma was im-
mediately separated and stored at — 80 °C until analysis.
Lactate levels were measured by arterial blood gases
examined (GEM Premier 3000 blood gas analyzer,
Instrumentation Laboratory, Lexington, MA). Myocar-
dial cellular injury was determined with MB isoenzyme
of creatine kinase (CK-MB, H197, Nanjing, Jiancheng
Bioengineering Institute), cardiac troponin I (cTNI,
E019, Nanjing Jiancheng Bioengineering Institute), and
heart-type fatty acid-binding protein (H-FABP, Shanghai
Renjie Biotechnology Company, Ltd). Cardiac function
and myocardial endothelial dysfunction were determined
with B-type natriuretic peptide (BNP, H166, Nanjing
Jiancheng Bioengineering Institute) and sP-selectin
(Shanghai Renjie Biotechnology Company, Ltd), respect-
ively. Plasma concentrations of these biomarkers were
determined with quantitative sandwich enzyme-linked
immunosorbent assay (ELISA) using commercially avail-
able kits (R&D).

Harvest of heart tissue

After the animals were sacrificed at 6 h after ROSC, the
hearts were excised, the right ventricle and both atria were
removed, and the left ventricle were frozen rapidly by
immersion in liquid N, and were stored — 80 °C until re-
quirement of measurements for Na*-K'-ATPase enzyme
activity, Ca>*-ATPase enzyme activity, superoxide dismut-
ase (SOD), and malondialdehyde (MDA). Measurements
of Na*-K*-ATPase, Ca>*-ATPase, SOD enzyme activity
and MDA content were just previously described [12].

Immunofluorescence staining

Immunofluorescence staining was performed on the
fixed cardiac tissue slides using a standard protocol with
primary antibodies, including monoclonal anti-Bax, anti-
Bcl-2 antibodies and anti-caspase-3 (Beijing Boao
Biotechnology Company) at 1:10,000 dilution (Cell
Signaling Technology; Danver, USA) and secondary
horseradish peroxidase (HRP)-conjugated goat anti
mouse antibody at 1:1000 dilution. The staining results
were observed under an optical microscopy (CX41;
Olympus, Tokyo, Japan).

Ultrastructural analysis

Some myocardial specimen preserved in 10% formalde-
hyde and 4% paraformaldehyde were dissected from the
left ventricular free walls of porcine hearts and 8 um-
thick slices were cut from each tissue block using a
cryostat microtome. The ultra structural pathologic
changes of the myocardium were observed using light
microscopy and TEM (JEM-1010; JEOL, Tokyo, Japan).
The pathologic data were assessed by pathologists
blinded to the experimental groups.

Statistical analysis

All data were analyzed using SPSS 19.0 software (SPSS,
Chicago, IL, USA). Continuous variables are expressed
as mean + SD. Student’s t-test was used for comparisons
between ECPR and CCPR groups. Differences at differ-
ent time points were assessed by repeated-measures ana-
lysis of variance (ANOVA), and P-values from post-hoc
testing were corrected for multiple comparisons using
the Bonferroni correction. Survival analysis was
performed using the method of Kaplan and Meier, and
comparisons between groups were made using the log-
rank test. A two-tailed P-value <0.05 was considered
statistically significant.
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Results

Survival rates

Twenty animals were successfully resuscitated. In CCPR
group, during the following 6-h observation after ROSC,
two of ten piglets died at 1h, another four animals died
at 2 h after ROSC, respectively. However, all ten piglets
survived in ECPR group after ROSC. There was a signifi-
cantly higher survival rate in ECPR group by the end of
the 6-h experiment period using the Kaplan-Meier
survival curve (P < 0.05) compared to CCPR group (10/10
[100%] vs. 4/10 [40%]) (Fig. 2).

Baseline status

Baseline characteristics of the ECPR and CCPR group
animals are shown in Table 1. No significant differences
were found in baseline weight, HR, CO, MAP, CVP,
CPP, hemoglobin level, and lactate level between the
two groups (P > 0.05).

MAP, CO and CPP decreased the minimum, and HR
increased the peak at the start-time point of ROSC
(ROSC 0) between ECPR group and CCPR group. There
were no significant differences in HR [181.0 +4.18 vs.
183.7 £5.38, P =0.32], MAP [63.9 £2.92 vs. 65.6 +2.30,
P =0.28], CO [2.43+0.07 vs. 242 +£0.13, P =0.79] and
CPP [57.8+297 vs. 57.4+290, P =0.81) between the
two groups at ROSC 0. MAP, CO and CPP were signifi-
cantly higher in ECPR group than in CCPR group at 1 h
[MAP, 100.5 +4.28 vs. 72.25 +2.22; CO, 2.69 £ 0.05 vs.
2.52 £ 0.03; CPP, 82.2+3.58 vs. 72.3+2.75]; 2h [MAP,
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109.5 £5.31 vs. 89.5+2.08; CO, 2.87 £0.09 vs. 2.68 +
0.03; and CPP, 81.9 + 3.54 vs. 79.2 + 2.60] and 4 h [MAP,
1172 £5.12 vs. 99.75 +4.50; CO, 3.11 £0.14 vs. 2.73 +
0.03; CPP, 81.6 +2.46 vs. 78.2 +2.78] after ROSC, but
were not significantly different between the two groups
at 6 h after ROSC [MAP, 116.2 +5.07 vs. 110.75 + 5.06,
P =0.09; CO, 3.20+0.03 vs. 3.18 £ 0.04, P =0.45; CPP,
82.3+3.23 vs. 81.25 +4.35, P = 0.62) (Fig. 3b, ¢, d). How-
ever, heart rates were significantly lower at all time
points during the 6 h after ROSC in ECPR group com-
pared to CCPR group (Fig. 3a).

Left ventricle cardiac function evaluation by
echocardiography

The dynamic changes of left ventricle ejection frac-
ture (LVEF) over time are showed in Fig. 4. There
were no statistical differences for LVEF at baseline
between the two groups [61.4+2.22 vs. 60.01 + 3.40,
P =0.29]. LVEF decreased gradually with the inci-
dence of VF, and reached a minimum at the initial
time point of ROSC (ROSC 0) in both groups, and
then increased significantly with time, verged on the
value of baseline at 6 h after ROSC [ROSC 6, 63.5 +
2.27 vs. 60.25+0.96, P =0.02]. Compared with CCPR
group, LVEF were significantly higher in ECMO
group at 1h [43.5+2.25 vs. 32.5+2.08, P =0.001], 2h
[52.3+228 vs. 44.25+2.71, P =0.001], and 4h
[56.7 £ 1.64 vs. 52.25+ 1.26, P = 0.001].

Survival Functions

time
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Fig. 2 Kaplan-Meier survival curve. There was a significantly higher survival rate in ECPR group compared to CCPR group (P < 0.05 by log-rank test)




Liu et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine

Table 1 Baseline characteristics between ECPR and CCPR groups

Variable ECPR (n=10) CCPR (n=10) P-value
Weight (kg) 31.70 £ 2.06 31.90 + 251 0.309
HR (bpm) 122.80 + 9.52 127.60 + 11.06 0.312
CO (ml/kg/min) 378 £ 0.21 376 £ 026 0.859
MAP (mmHg) 115.80 + 6.56 116.80 + 3.52 0.322
CVP (mmHg) 540 + 097 550+ 1.08 0.656
CPP (mmHg) 81.80 + 2.90 83.00 + 450 0487
Hemoglobin (g/dL) 1094 £ 033 11.02 £ 041 0.345
Lactate (mmol/L) 303 +£0.18 299 +0.17 0.609

HR heart rate, CO cardiac output, MAP mean aortic pressure, CVP central
venous pressure, CPP coronary perfusion pressure

(2019) 27:82 Page 5 of 11

Serum biomarkers levels of myocardial injury and cardiac
dysfunction

As showed in Fig. 5, there were no significant differences
for the serum levels of ¢TNI [2.07 + 0.08 vs. 2.04 + 0.05,
P =0.24]; CK-MB [140.76 £ 1.47 vs. 141.62+1.96, P =
0.28]; H-FABP [1.75 +0.03 vs. 1.78 £ 0.04, P = 0.06] and
BNP [5.15+0.3 vs. 4.93 +0.24, P =0.09] at baseline and
the initial time point of ROSC (ROSC 0) [c¢TNI, 2.22 +
0.26 vs. 2.11 +0.04; CK-MB, 155.37 +4.87 vs. 153.58 +
2.09; H-FABP, 1.88+0.08 vs. 1.86+0.05; and BNP,
5.48 £ 0.55 vs. 5.30 + 0.16] between the two groups, and
were progressively elevated throughout the study time
points after ROSC, reached the peak at 6 h after ROSC,
and the levels of ¢cTNI, CK-MB, H-FABP, and BNP were
markedly higher in CCPR group compared to ECPR
group at 1h [cTNI, 4.77 £0.19 vs. 6.50 £ 0.11; CK-MB,
178.74 +7.22 vs. 204.62 + 0.90; H-FABP, 1.98 + 0.05 vs.

2.20£0.01; BNP, 1292+0.99 vs. 17.93+0.60]; 2h
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Fig. 3 Hemodynamic parameters between ECPR and CCPR groups. HR: heart rate; MAP: mean aortic pressure; CO: cardiac output; CPP: coronary
perfusion pressure; CCPR: conventional cardiopulmonary resuscitation; ECPR: extracorporeal cardiopulmonary resuscitation; ROSC: return of
spontaneous circulation; The solid triangle indicates ECPR group; The solid square denotes CCPR group; The bar length represents the standard
deviation. *P < 0.05 vs. CCPR group




Liu et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (2019) 27:82 Page 6 of 11
P
—m— CCPR
70 - —W—ECPR
60
504
X
g
> 40+
L
|
30
20 4
T = T ¥ T * T % T ¥ T .
Baseline ROSCOh ROSC1h ROSC2h ROSC4h ROSC6h
Fig. 4 LVEF measured by echocardiography at different measurement times. LVEF: left ventricular ejection fraction, expressed in percentages.
*P < 0.05 vs. CCPR group

J

[cTNI, 13.70+0.76 vs. 16.06 + 0.62; CK-MB, 362.82 +
8.48 vs. 402.95 +2.65; H-FABP, 2.11 £0.09 vs. 2.35+
0.04; BNP, 23.38+0.36 vs. 18.73+0.89], 4h [cTNI,
21.80 £ 0.56 vs. 25.84 +0.47; CK-MB, 766.5 +20.10 vs.
842.10 + 3.48; H-FABP, 2.32 £ 0.05 vs. 2.47 + 0.04; BNP,
28.63 + 0.36 vs. 23.18. + 0.85] and 6 h after ROSC [cTNI,
40.74 + 1.07 vs. 47.76 £ 0.43; CK-MB, 841.89 +3.54 vs.
949.87 + 1.78; H-FABP, 2.43 £ 0.03 vs. 2.59 + 0.02; BNP,
38.05+0.15 vs. 34.42 +1.60] (ROSC 1, 2, 4, 6h) (P<
0.05). The sP-selectin concentrations were increased
gradually compared to the baseline values before ROSC
in the two groups, reached the maximum at ROSC 0
[9.25 +0.34 vs. 9.3 + 0.24] and then decreased with time
extension, and reached the minimum at 6 h after ROSC
[6.73 +£0.22 vs. 5.5+ 0.19]. However, the sP-selectin and
lactate concentrations were significantly lower in ECPR
group than in CCPR group at 1h, 2h, 4h, and 6 h after
ROSC (P <0.05).

The content of MDA and activities of Na™-K*-ATPase,
Ca®*-ATPase and SOD of left ventricle myocardium

The activities of Na*-K'-ATPase, Ca®>*-ATPase and
SOD of left ventricle myocardium were significantly
higher in ECPR group than in CCPR group at 6 h after
ROSC. At the same time, the myocardial MDA content
was significantly decreased in ECPR group compared to
CCPR group (P < 0.05; Table 2).

Cardiomyocyte apoptosis

Immunofluorescence staining assay was performed to
evaluate cardiomyocyte apoptosis and apoptosis was
decreased in ECPR groups compared to CCPR group.
Furthermore, upregulation of BCL-2 and downregulation

of Bax and cleaved caspase-3 expression were detected
in ECPR group (Fig. 6).

Ultrastructural changes in cardiomyocytes

Animals were sacrificed after ROSC 6 h, ultramicrostruc-
tural changes of cardiomyocytes were observed under
TEM. Myocardial fiber and intercalated disk were found
to be markedly disordered, broken, or dissolved. Most of
the mitochondria were seriously damaged, vacuolar
degenerated, mitochondria cristae were vague, arranged
irregularly, or disrupted in CCPR group (Fig. 7a, c).
However, the morphologic structure of cardiomyocytes
included partial nuclear chromatin condensation, crest
fracture, and moderate edema in the mitochondria and
sarcoplasmic reticula, only exhibiting slight intracellular
damage in ECPR group (Fig. 7b, d).

Discussion

ECPR has been originally used as a therapeutic option
during refractory CA since 1976. In the 2010 American
Heart Association (AHA) guideline, ECPR has been rec-
ommended as an alternative option for patients who
have a brief no-flow time and a reversible cause of CA
[13]. As the most severe shock state, CA results in the
whole-body ischemia-reperfusion, during which the de-
livery of oxygen and supply of blood are abruptly halted,
and a large amount of metabolites are produced and
hardly removed [14]. Although conventional CPR may
partially reverse this process, CO achieved is still much
less than normal [15]. It has been showed that the most
important determinant of ROSC during CPR is myocar-
dial blood flow, which is driven by CPP. CPP during
CPR has been considered as a leading predictor of suc-
cessful resuscitation [16, 17]. In our study, pigs that
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Fig. 5 Dynamic changes of serum cardiac biomarkers between ECPR and CCPR groups. cTNI: cardiac troponin |; CK-MB: MB isoenzyme of creatine
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underwent CA between CCPR and ECPR groups pre-
sented the significantly decreased MAP, CO, LVEF and
CPP, suggesting the severe post-resuscitation myocardial
dysfunction (PRMD) and myocardial ischemia. Although

the etiology of PRMD is not clear, it is thought to be as-
sociated with cardiovascular ischemia/reperfusion injury
(IRI), cardiovascular toxicity from excessive levels of in-
flammatory cytokine activation and catecholamines, and
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Table 2 The content of MDA and the activity of Na*-K*-ATPase,
Ca’™-ATPase and SOD in left ventricle tissue at 6 h after ROSC

Parameter ECPR CCPR P-value
SOD (NU/mg) 14.00 + 0.32 11.89 + 0.55 P<0.05
MDA (umol/g) 1555+ 053 2278 £ 0.78 P <0.05
Na*-K*-ATPase (U) 5.8 £ 0.09 319+ 0.11 P<0.05
Ca’*-ATPase (U) 6.33 £ 0.06 497 £0.15 P <0.05

Values are shown as mean + SD; ECPR Extracorporeal cardiopulmonary
resuscitation, CCPR Conventional cardiopulmonary resuscitation

other contributing factors [18]. However, increased
microcirculatory blood perfusion, improved cardiac
function, reduced oxygen consume of heart, as evi-
denced by progressively increased MAP, CO, LVEF and
lower HR after successful ROSC in ECPR group indi-
cated that ECMO played an important role in the
recovery of cardiac function. In addition, a rapid and
stable increase for CPP during CPR also ameliorated the
myocardial blood perfusion, accelerated the recovery of
cardiac function compared to CCPR, which was in line
with previous studies [19, 20].

Cardiac biomarkers play a crucial role in the prediction
of the severity of myocardial injury, cardiac dysfunction
and prognosis in the early stage of post-resuscitation. Cur-
rently, serum ¢TNI, CK-MB and BNP are the most com-
monly used and sensitive biomarker available for early
myocardial injuries and cardiac function [21]. Heart-type
fatty acid-binding protein (H-FABP) also has been
reported to be an early sensitive predictor for myocardial

CCPR

ECPR

b S T,
bax &g \.\ '
24 ‘ \ : %
caspase-3 .~ = ;:Q

- -
Fig. 6 Apoptosis detection in porcine at 6 h after successful
resuscitation. Representative images of immunostaining of Bcl-2, bax,

and cleaved caspase-3. CCPR: Conventional cardiopulmonary
resuscitation; ECPR: Extracorporeal cardiopulmonary resuscitation
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injury and higher plasma H-FABP levels suggest further
cardiac events and worse prognosis [22]. Now it is com-
monly accepted that endothelial dysfunction and inflam-
mation are involved in the physiopathology of CA. It has
been showed that P-selectin, as an inflammatory adhesion
molecule, its soluble form sP-selectin levels were signifi-
cantly increased in the early stage of CA [23, 24]. Our
findings showed that the levels of cTNI, CK-MB, H-FABP,
BNP and sP-selectin were significantly elevated in each
group after ROSC, but the concentrations were signifi-
cantly lower in ECPR group than in CCPR group during
resuscitation, suggesting that myocardial injury and endo-
thelial damage were unavoidable after resuscitation, and
application of ECMO can attenuate the degree of myocar-
dial injury and endothelial damage, further improve car-
diac function. Additionally, further cardioprotection by
ECMO was associated with the descendent myocardial
loading, decreased myocardial work, and reduced exogenic
myocardial impairment by chest compressions.

CA causes inadequate cellular oxygen utilization, and
results in an increase of lactate level which reflects ab-
normal cellular function. Numerous studies have re-
vealed an association between initial serum lactate levels
and survival in CA, and reported serum lactate level was
an independent prognostic factor of mortality and
neurological outcome [5, 25-27]. Hayashida K et al. [28]
showed that effective lactate reduction over the first 6 h
of post-CA care was implicated in survival and good
neurologic outcome independently of the initial lactate
level. Oxidative stress plays an important role in the
process of IRL. During the CA-associated reperfusion of
ischemic myocardium, a large amount of oxygen free
radicals (OFRs) overproduced can result in oxidative
damage for myocardium. The preserved activity of SOD
has capable of clearing OFRs, which displays strong car-
dioprotective effects [29, 30]. As an end product of lipid
peroxidation, MDA gives rise to cellular damage and dis-
ruption of cell membranes when tissue antioxidants are
exhausted [31]. Na"-K"-ATPase is an important medi-
ator in the regulation of vasculature tone and contractil-
ity, and decreased Na"-K'-ATPase expression induces
cardiomyocytes death, ultimately leading to myocardial
dilation, cardiac dysfunction, and even heart failure (HF)
[32]. Ca®*-ATPase plays the major contribution in
cardiomyocyte calcium removal, and is a key regulator
of IRI. Similarly, overexpression of Ca**-ATPase pre-
serves cardiac function following IRI, improves cardiac
performance and limits cardiac hypertrophy and HF
[33]. In our present study, in contrast to CCPR group,
ECPR group demonstrated a relatively lower lactate
level, MDA content and higher SOD content, Na*-K"-
ATPase and Ca®*-ATPase expression during resuscita-
tion, indicating that ECMO may effectively improve tis-
sue perfusion, increase oxygen utility, ameliorate the
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CCPR

(b, d) (original magnification x 30,000)

-

Fig. 7 Ultrastructure of the myocardium under TEM at 6 h after successful resuscitation in porcinein CCPR group (a, €) and in ECPR group

ECPR

energy metabolism and reduce oxidative damage of
myocardium, and attenuate post-ischemia reperfusion
cardiac dysfunction.

Accumulating evidence demonstrate that myocardial
ischemia reperfusion after ROSC may induce cardiomyo-
cytes apoptosis [34—36]. Apoptosis results in the reduc-
tion of quantities of contractile cardiomyocytes, leading
to the decrease of cardiac pump capability, consequently
induce hear failure. Bcl-2 (B cell lymphoma gene-2) fam-
ily plays important roles in the regulation of cardiomyo-
cytes apoptosis. Bcl-2 is the most important
antiapoptotic protein, and Bax (Bcl-2-associated protein
X) is the most characteristic death-promoting member
of the Bcl-2 family. Overexpression of Bcl-2 relative to
Bax inhibits apoptosis, and conversely, promotes apop-
tosis [37]. A family of caspases is another key regulator
of apoptotic signaling pathway. Caspase-3 is one of the
executioner caspases and is responsible for apoptotic cell
death, leading to internucleosomal DNA fragmentation
[37]. Aside from contributing to cell death, caspase-3
activation promotes the progressive loss of contractile
function in heart by facilitating the degradation of
myofibrillar proteins, leading to HF [38]. The present
findings demonstrated that ECPR can decrease myocar-
dial apoptosis, as evidenced by upregulation of Bcl-2 in
relative to Bax and caspase-3 expression compared to
CCPR. In addition, less apoptotic cardiomyocyte were

observed under treatment with ECMO. These data
indicate that ECMO can reduce IRI-induced cardiomyo-
cye apoptosis, suggesting a key role of ECMO in post-
resuscitation myocardial dysfunction. Furthermore,
histologic findings further provided the evidence that
ECMO can alleviate post-ischemia reperfusion myocar-
dial injury. There a difference between the dosages of
epinephrine used between the two groups. The cardio-
protectice effect of ECMO in this study could also be
driven by saving on cardiotoxic catecholamines.

Limitations

Our study has some limitations to merit consider-
ation. First, only young healthy pigs without any
discernible coexisting disease were used in the experi-
ment, which cannot be compared with humans who
suffered from severe disease. The study was
performed in animal with healthy hearts. It remains
unclear, how ECMO support works in the case of
acutely reduced lv dysfunction and a vulnerable heart
like ischemic myocardium with baseline elevated fill-
ing pressures. Here, ECMO might be even harmful
and aggravate myocardial damage due to the burden
of the increased afterload. Second, the mechanism
how ECMO inhibit myocardial apoptosis is still un-
known. Third, the time frame of our study was set at
6 h after ROSC, which may not be sufficient to detect
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the changes of function and apoptosis of myocardial.
Four, in our experiment, ECMO was implanted under
controlled conditions before the induction of CA, but
in real conditions, we may implant ECMO under ungoing
CPR with risk of vascular complications which may lead
to delay of ECMO support. Thus, further studies are
required to address these limitations.

Conclusions

Based on these experimental findings, we conclude
that ECPR after prolonged VF-induced CA improves
hemodynamics, attenuates myocardial injury and
endothelial damage after ischemia reperfusion, de-
creases oxidative damage, reduces cardiomyocyte
apoptosis, ameliorates myocardial ultra structure,
improves cardiac function, and ultimately elevates the
survival rate. This study provides a novel basic animal
data for the cardioprotection of ECMO in prolonged
VE-induced CA.
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