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Could we employ the queueing theory to
improve efficiency during future mass
causality incidents?
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Abstract

Background: Preparation for a disaster or accident-related mass casualty events is often based on experience. The
objective measures or tools for evaluating decision-making and effectiveness during such events are underdeveloped.
Queueing theory has been suggested to evaluate the effectiveness of mass causality incidents (MCI) plans.

Objective: Using different types of real MCI, we aimed to determine if a queueing network model could be used as a
tool to assist in preparing plans to address mass causality incidents.

Methods: We collected information from two types of mass casualty events: a motor vehicle accident and a dust
explosion. Patient characteristics, time intervals of every working station, numbers of physicians and nurses attending,
and time required by physicians and nurses during these two MCIs were collected and used for calculation in a
queueing network model. Balanced efficiency was determined by calculating the numbers of server, i.e., nurses and
physicians, in the two MCIs.

Results: Efficient patient flows were found in both MCIs. However, excessive medical manpower supply was revealed
when the queueing network model was applied to assess the MCIs. The best fitting result, i.e., the most efficient man
power utilization, can be calculated by the queueing network models. Furthermore, balanced efficiency may be a more
suitable condition than the highest efficiency man power utilization when faced with MCIs.

Conclusion: The queueing network model is a flexible tool that could be used in different types of MCIs to observe
the degree of efficiency when handling MCIs.
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Introduction
Hospitals should have a comprehensive mass-casualty in-
cidents (MCI) preparedness plan that can be used to cope
with surges in demand for healthcare. An important con-
cept that should be included in an MCI preparedness plan
is that of balance between the demand (e.g. patients) and
supply (e.g., resources). Two concepts have been used to
describe the aforementioned balance: surge capacity,
which is traditionally defined as the maximum available
resource of a health care system to meet the increased de-
mand that occurs during an MCI [1], and surge response

capability (SRC), which is the ability of the surge capacity
to accommodate the surge [1]. While saving excessively
on SRC during disaster events may strain ordinary daily
medical needs and/or increase the workload of medical
personnel, reserving too little SRC could present other is-
sues that may put medical staff and patients in danger.
Thus, effective decision-making is essential to the success
of an MCI preparedness plan. The Task Force on Quality
Control in Disaster Medicine of the World Association
for Disaster and Emergency Medicine defined effective-
ness as a quality which “relates to how closely the output
matches the specified goal.” [2] Thus, establishing flexible
and objective measures with which to determine effective-
ness in responding to MCIs is a worthwhile endeavor.
Queueing theory (QT) has been suggested to evaluate

the effectiveness of MCI plans [3]. This concept has
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been widely used to develop emergency department
(ED) flow models to cope with ED crowding [4–6], but
is rarely applied to MCIs. The theory, which includes as-
sumptions on the probabilistic nature of the arrival at
the queue, waiting in the queue, and serving the front of
the queue, is a mathematical description of a queueing
system. Based on QT theory, several measures of per-
formance, including average waiting time in the queue
or system, expected number waiting for or receiving ser-
vice, and probability of encountering the system in cer-
tain states, could be derived. Application of this theory
necessitates some trade-offs between the cost of service
(providing health care) and the cost associated with
waiting for that service (treatment delay). The ultimate
goal of the concept is to achieve a balance between ser-
vice in disaster events and ordinary clinical care. There-
fore, queueing models may be used to make decisions
that balance health care service (SRC) with MCI demand
(surge capacity). QT usually contains only one node or
station and can only manage uni-directional flow. Thus,
the queueing network theory (QNT) was developed to
solve the issue related to multiple stations.
Valuable lessons regarding decision-making and effect-

iveness have been learned through exercises and simula-
tions [7, 8]. However, actual disaster experiences may
add expert consensus regarding the meaning of optimal
decision making and the effectiveness mean [2]. To the
best of our knowledge, objective measures or tools to
evaluate disaster management plans remain underdevel-
oped. We believe that applying a queueing network to
different types of actual MCIs can help evaluate
decision-making and effectiveness (optimal SRC) in re-
sponse to MCIs. Accordingly, we aimed to derive a novel
QT-based network by using real MCIs in the ED, to sup-
port decision-making in disaster management.

Methods and materials
MCI cases and analysis
We retrospectively collected data from two MCIs: a bus
accident that occurred on a freeway in December 2013
and subsequently resulted in 41 casualties (Event A),
and a dust explosion in a water park that occurred on
June 2015 and subsequently resulted in 499 casualties
(Event B). All of the victims in event A were sent to the
Chang Gung Memorial Hospital (CGMH) in Linkou,
which was a 5-min drive from the accident. In event B,
forty-nine victims with severe burns were sent to
CGMH for further care as the hospital is a 30-min drive
from the location of the dust explosion on an ordinary
day. CGMH is a tertiary academic teaching hospital with
3700 beds, serving approximately 180,000 patients in its
ED annually; it is categorized as an advanced emergency
response hospital by the Ministry of Health and Welfare
in Taiwan [9]. The five-level validated Taiwan triage and

acuity scale was implemented since 2010 in Taiwan. For
the MCI and disaster planning purpose, we simplified
the triage into emergency (level one and two) and ur-
gency (other levels). We followed the Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) statement to report this observational study.
The institutional review board approved this study
(201700662B0) and waived the informed consents owing
to the retrospective nature of this study.
Figure 1a and b illustrate patient flows from one work-

ing station to another in event A and B, respectively. Pa-
tient characteristics and time intervals of every working
station were obtained from electronic medical records in
CGMH. For example, the times from the accident scene
to the hospital, from triage to consultation with physi-
cians, from prescription to execution, and from order
execution to disposition were collected and calculated.
The triage levels of patients and numbers of physicians
and nurses attending during the MCIs were also re-
corded. The average times required for physicians to
complete patient consultations, nurses to perform triage
assessment, and radiology technicians to perform radi-
ology examinations were recorded and used for further
calculations in the model.

Queueing network model
In this study, the queueing network can be considered
as a system composed of an arbitrary but finite number
of interconnected queues, such as patient flows. Such a
network can be modeled by a set of treatment centers
where each treatment center may contain one or more
health-care providers. Patients traveling through the net-
work were served at the treatment centers. Queueing
networks can be further divided as open, closed, or
mixed according to the different patterns in which pa-
tients enter or leave the system. In the open queueing
network, patients enter the network from outside, re-
ceive treatment at one or more centers, and then leave
the network. By comparison, in the closed queueing net-
work, patients never leave or enter the network [10, 11].
The mixed queueing network is open to some patients
and closed to others [12]. Furthermore, in our network
queueing model, the nurses are responsible for triage
and treatment stations, and the physicians were respon-
sible for the assessment and consultation stations.

Underlying assumptions
In this study, we focus on open queueing networks to
evaluate ED operations. The following assumptions must
be fulfilled for an open queueing network:

(1) Each treatment center follows a first-in/ first-out queue.
(2) The treatment time of queue i follows an

exponential distribution with parameter µi.
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(3) Upon departure from the queue i, the patient
transfers to the next queue j with a probability
of qi,j.

(4) The network is open to arrivals from outside the
network, where the source s patients arrive as a
Poisson distribution with a mean arrival rate λ and
a fraction qs,i of these enter the queue i with
intensity λ qs,i.

Performance
The measures of performance for a waiting-line system
in the queueing analysis can be derived based on two
statistics: the mean arrival rate (λ) and the mean treated
rate (µ). The following performance indicators were used
in the analysis [13].

1. ρ: Utilization factor for the system (what proportion
of time the treatment center is busy) or efficiency,
the higher this factor, the more the system is
utilized. In MCI setting, balance between under or
over-efficient is important since the resource is
limited. (ρ = λ / µ)

2. Ls: Average number of patients in the system,
including patients who are being treated and who
are waiting to be treated, similar to the concept of
crowding. (Ls = ρ / (1 – ρ) = λ / (µ – λ))

3. Lq: Average length of the queue or the average
number of patients in a line awaiting service.
(Lq = Ls - ρ = ρ2 / (1 – ρ))

4. Ws: Average time a patient stays in the system
(waiting time plus treatment time).
(Ws = Ls / λ = 1 / (µ – λ))

Fig. 1 a and b patient flow during event A and event B, respectively. Triage: triage station; Triage 1,2/ 3,4 assessment: ED physicians evaluate
triage 1,2 /3,4 patients; X- Ray and CT-Scan: radiology examination; Treatment 1/2: nurses execute medical orders of triage 1,2 /3,4 patients.
The number in figures imply the number of patients
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5. Wq: Average waiting time or the average length of
time a patient waits before being treated.
(Wq = Lq / λ = ρ / (µ – λ))

The statistics of the arrival rate (λ) and the treated rate
(µ) were also determined from the available data using
the observed average for each station, but with some ad-
justments according to consensus meetings. The open
queueing network analysis was performed using Queue-
ing Theory Software (QTS) [13]. Furthermore, in order
to test the sensitivity of influence of insufficiency of
health care provider called to the ED to support from
the institute, we conducted a sensitivity analysis using
half the mean treated rate (µ) to test the performance.

Results
Table 1 lists the characteristics of the patients in events
A and B; the median ages of the patients were 27 years
(range, 20–39 years) and 20 years (range, 19–24 years),
respectively. While 65.9% of the patients in event A were
triaged with triage as urgency (level three acuity), 76.6%
of the patients in event B were triaged as emergency
(level one or two acuity). Considering this difference in
triage acuity, the two events may be considered to be
quite different from each other.
Patients began arriving at the CGMH ED about 20

min after the accident in event A. The last patient ar-
rived 70min after the accident. Thus, for event A, a
rapid surge in patient admission occurred within 50 min.
In contrast, for event B, the hospital began to receive pa-
tients 19 min after the dust explosion, and the last pa-
tient arrived 160 min after the accident (Additional file
1: Figure S1). The calculated average of events A and B
were 41 and 22 persons per hour, respectively. Severe
traffic jams occurred near the dust explosion location,
and retrieval of the victims was challenging because of
the remote location of the accident. These two factors
could have influenced the slow λ of patients at the hos-
pital in event B. When event B occurred, news outlets
estimated nearly 500 victims. Thus, a large number of

ED physicians, trauma surgeons, and nurses were called
back to CGMH to prepare for the incoming surge of pa-
tients from event B. Three hundred and thirty-six staff
members, including 90 doctors (19 plastic surgeons, 11
ED doctors, and 8 trauma surgeons), 184 nurses, 21 ad-
ministrators, and 41 paramedical staff were called to
various hospitals that night. Five patients with superficial
secondary burns on less than 5% of their total body sur-
face area were discharged directly from the ED. Seven
patients with mild burn injuries were admitted to ordin-
ary wards, 25 patients were admitted to the burn unit,
and 12 patients were admitted to the microsurgical in-
tensive care unit [14]. The mean ED lengths of stay for
events A and B were 88.74 ± 35.39 and 141.74 ± 113.70
min, respectively.
Table 2 shows the service intervals of events A and B.

Execution of medical orders by the nurses was the most
time-consuming service. Using the service intervals listed
in Table 2, the results of the queueing network for events
A and B (Fig. 1) were subsequently calculated and are
shown in Tables 3 and 4. For event A and B, the mean ar-
rival rates λ at the triage station were 41 and 22 patients
per hour and mean treated rates µ were 15 and 6 patients
per hour, respectively. Given three servers in the triage
station, the average number of people in the system (Ls)
were 11.3 and 12.7, and the average number of people in a
line awaiting service (Lq) were 8.58 and 9.04, respectively.
The average time for a customer in the system (waiting
time plus service time; Ws) were 0.28 and 0.58 h, while
the average waiting time (Wq) were 0.21 and 0.41 h, re-
spectively. The efficiency (ρ) were 91.11 and 91.67%, re-
spectively. When the number of servers was increased to
4 or 5 per triage station in event A, the efficiency (ρ) was
decreased to 68.3 and 54.7%, respectively. We also
illustrate how insufficiency of health care provider can
influence the estimated numbers of servers in the
Additional file 2: Table S1.
The most efficient manpower utilization rates (the best

fitting results, the highest ρ) of the queueing network for
events A and B can be obtained through our model
(Table 5). The best fitting model predicted the need for
three nurses at the triage station, two ED physicians to
evaluate the emergency (triage one and two) patients,
seven ED physicians to evaluate the urgent (triage level
three and four) patients, two nurses to treat less severe
patients and six nurses to treat the more severe patients
in event A (Table 5). Therefore, nine ED physicians and
11 nurses were actually necessary. However, only three
ED physicians but 30 nurses were involved in event A.
In event B, the best fitting model indicated the need for
four nurses in the triage station, three ED physicians to
evaluate the more severe patients, one ED physician to
evaluate the less severe patients, three nurses to treat
the less severe patients and 18 nurses in triage to treat

Table 1 Patient Characteristics in event A and event B

Event A (n = 41) Event B (n = 47)

Age, year, Median (Range) 27 (20–39) 20 (19–24)

Gender, No. (%)

Male 14 (34.15%) 20 (42.55%)

Female 27 (65.85%) 27 (57.45%)

Triage, No. (%)

1 1 (2.44%) 32 (68.09%)

2 4 (9.76%) 4 (8.51%)

3 27 (65.85%) 11 (23.4%)

4 9 (21.95%) 0 (0%)
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the more severe patients. Therefore, the model predicted a
need for only four ED physicians and 25 nurses. However,
15 ED physicians and 120 nurses were involved in event B.

Discussion
In this study, we utilize QT as mathematical models to
allow system designers to calculate performance metrics
(such as average queue length, average wait time, and the
proportion of customers turned away) in health care opera-
tions [15]. Previous studies mainly focus on the emergency
cardiac ward, intensive care unit, entire hospital, or general
operational research settings [16–21]. In this study, we ap-
plied queueing network to different kinds of MCIs to
examine the degree of efficiency when handling these
events. Using these models, we demonstrated how to use
QT in evaluating patient arrival, efficient patient flow,
length of stay, efficient patient outflow and physician and

nursing manpower in two different kinds of MCIs. We be-
lieve that this study is the first to apply QT to evaluate the
decision-making and effectiveness (optimal SRC) of differ-
ent types of MCI management plans in the ED.

Patient arrival, efficient patient flow and length of stay
Creating an efficient patient flow is key to successfully
cope with a surge during an MCI. To achieve efficient
patient flow, high efficiency with high SRC is necessary
at every working station in the ED during MCIs. The
characteristics of an efficient patient flow include high
patient throughput, a short length of stay (Ws and Wq),
maintenance of a sufficient resource utilization rate (ρ),
and low staff idle time [22]. The length of stay in an ED
during an MCI could serve as an index of efficiency in
managing MCIs. In this study, we found that patients
from event B had a much longer length of stay in the

Table 2 Service Intervals of Events A and B

Event A Event B

Service Intervals (minutes) Triage category No. (%) Mean ± SD Min Max No. (%) Mean ± SD Min Max

Time form accident happened to ED admission time All 41(100) 48.07 ± 12.48 23 65 47 (100) 64.35 ± 41.00 18 153

Time form ED admission time to triage All 41(100) 3.76 ± 1.45 1 7 47 (100) 10.45 ± 10.12 1 42

Time form triage to ED physician evaluate patient Emergency 5 (12.2) 11 ± 4.64 7 17 36 (76.6) 13.75 ± 9.24 1 36

Urgency 36 (87.8) 12.86 ± 4.90 2 22 11 (23.4) 8.55 ± 4.59 4 18

Time of nurse execute the medical orders Emergency 5 (12.2) 82.6 ± 33.02 35 117 36 (76.6) 150.97 ± 111.61 8 470

Urgency 36 (87.8) 71.52 ± 30.48 28 144 11 (23.4) 88 ± 120.32 6 338

Time form X ray ordered to patient been
sent to X ray room

All 31(75.61) 1.45 ± 0.87 1 4 27 (57.45) 10.58 ± 10.44 1 35

Time for taking X ray All 31(75.61) 12.31 ± 5.73 2 22 27 (57.45) 12.23 ± 9.22 1 29

Time form CT scan ordered to patient been
sent to T scan room

All 9(21.95) 1.75 ± 1.16 1 4 – – – –

Time for taking CT scan All 9(21.95) 20.33 ± 15.40 4 48 – – – –

ED stay length from triage to discharge Triage 1 and 2 5 (12.2) 87.67 ± 33.84 59 125 36 (76.6) 147.05 ± 103.37 8 407

Triage 3 and 4 36 (87.8) 84.81 ± 36.83 16 158 11 (23.4) 79.67 ± 117.22 1 339

*For MCI planning purposes: emergency was defined as triage level one and two, urgency defined as other triage levels

Table 3 The results of queueing network for events A

Queue Stationb Triage Assessment12a Assessment34a Treatment1 Treatment2 Consult

λ 41 5.002 35.998 7.99 33.008 41

μ 15 4 6 6 6 12

Servers 3 4 5 2 3 4 7 8 9 2 3 4 6 7 8 4 5 6

Ls 11.310 3.603 2.945 2.053 1.362 1.269 9.681 7.070 6.391 2.393 1.476 1.358 14.124 7.179 6.055 7.501 4.176 3.632

Lq 8.577 0.870 0.211 0.803 0.111 0.019 3.681 1.070 0.392 1.062 0.144 0.026 8.623 1.677 0.554 4.084 0.759 0.215

Ws (hour) 0.276 0.088 0.072 0.410 0.272 0.254 0.270 0.196 0.178 0.299 0.185 0.170 0.428 0.217 0.183 0.183 0.102 0.089

Wq (hour) 0.2091 0.021 0.005 0.160 0.022 0.004 0.102 0.029 0.011 0.133 0.018 0.003 0.261 0.051 0.017 0.100 0.019 0.005

ρ (%) 91.11 68.33 54.67 62.53 41.68 31.26 85.71 75.00 66.66 66.60 44.40 33.30 91.69 78.59 68.77 85.42 68.33 56.94
aAssess12: assessment for triage 1 and 2. Assess34: assessment for triage 3 and 4
bλ the arrival rate, µ the served rate, Ls Average number of people in the system, Lq Average length of the queue or the average number of people in a line
awaiting service, Ws Average time for a customer in the system (waiting time plus service time), Wq Average waiting time or the average length of time that a
customer waits before being served, ρ utilization factor for the system
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ED than those from event A. This finding could be ex-
plained by differences in the type of MCI, the arrival rate
of triage (λ), the severity of patient condition (time
needed to evaluate and treat patients), and the output
time interval between events, all of which may influence
the length of stay in the ED.
An important modifiable factor is the arrival rate, which

has an ongoing effect on a patient’s length of stay as a
function of its impact on waiting time [23]. Event A had a
higher arrival rate (λ) than event B in triage; however, a
shorter length of stay in the ED was observed in event A.
Event B was an MCI characterized by a large number of
severe burn injury patients, while event A was a traffic ac-
cident with patients who suffered only mild injuries. As
the type of MCI may determine the severity of patients’
conditions, event B required longer lengths of stay in the
ED than event A. Using the queueing network, much lon-
ger time patients staying the system (Ws) and waiting to
be treated (Wq) and fewer patients in our triage and ED
(Ls and Lq) can be observed in the more severe patients in
event B but not in event A.

A queueing network could be used in different types
of MCIs to examine the degree of efficiency when hand-
ing these events. In the two MCI cases we studied, short
length of stay (Ws and Wq), sufficient resource
utilization (ρ) and the absence of staff idle time (deter-
mined via discussion with the head nurses participating
in the two MCIs) were observed. A shortage of man-
power during MCIs may cause high levels of stress and
an excessive workload for physicians, even when patient
injuries are less serious. In event A, three ED physicians
and 30 nurses were available. However, according to the
queueing network, the availability of up to nine ED phy-
sicians and only 11 nurses was considered to be the
most efficient strategy (the highest ρ in each working
station) to cope with event A. In contrast, excessive
availability of medical staff in event B was observed
when the queueing network was applied to examine it.
Specifically, 90 physicians and 184 nurses were available
in event B. However, according to the best fitting result
of queueing network, only four physicians and 25 nurses
were needed. Excess staff availability during MCI is a

Table 4 The results of queueing network for events B

Queue
Stationb

Triage Assessment12a Assessment34a Treatment1 Treatment2 Consult

λ 22 16.852 5.148 4.6795 17.3205 22

µ 6 6 12 2 1 12

Servers 4 5 6 3 4 5 1 2 3 3 4 5 18 19 20 2 3 4

Ls 12.706 4.857 3.997 15.755 3.827 3.054 0.751 0.449 0.431 4.519 2.718 2.431 38.249 23.545 20.126 11.478 2.413 1.948

Lq 9.039 1.190 0.330 12.946 1.018 0.245 0.322 0.021 0.002 2.179 0.378 0.091 20.928 6.225 2.805 9.645 0.580 0.115

Ws (hour) 0.578 0.221 0.182 0.935 0.227 0.181 0.146 0.087 0.084 0.966 0.581 0.519 2.208 1.359 1.162 0.522 0.109 0.088

Wq (hour) 0.411 0.054 0.015 0.768 0.060 0.015 0.063 0.004 0.0003 0.466 0.081 0.019 1.208 0.359 0.162 0.438 0.026 0.005

ρ (%) 91.67 73.33 61.11 93.62 70.22 56.17 42.90 21.45 14.30 77.99 58.49 46.80 96.22 91.16 86.60 91.67 61.11 45.83
aAssess12: assessment for triage 1 and 2. Assess34: assessment for triage 3 and 4
bλ the arrival rate, µ the served rate, Ls Average number of people in the system, Lq Average length of the queue or the average number of people in a line awaiting
service, Ws Average time for a customer in the system (waiting time plus service time),Wq Average waiting time or the average length of time that a customer waits
before being served, ρ utilization factor for the system

Table 5 The best fitting results of queueing network for Events A and B

Event A B

Queue Stationb Triage Assess12a Assess34a X-ray CTa Tre1a Tre2a Consult Triage Assess12a Assess34a X-ray Tre1a Tre2a Consult

λ 41 5 35.99 31 9.01 7.99 33.01 41 22 16.85 5.15 8.89 4.68 17.32 22

μ 15 4 6 20 10 6 6 12 6 6 12 20 2 1 12

Servers 3 2 7 2 1 2 6 4 4 3 1 1 3 18 2

Ls 11.31 2.05 9.68 3.88 9.15 2.39 14.12 7.50 12.71 15.75 0.75 0.80 4.52 38.25 11.48

Lq 8.58 0.80 3.68 2.33 8.24 1.06 8.62 4.08 9.04 12.95 0.32 0.36 2.18 20.93 9.64

Ws (hour) 0.28 0.41 0.27 0.13 1.01 0.30 0.43 0.18 0.58 0.93 0.15 0.09 0.97 2.21 0.52

Wq (hour) 0.21 0.16 0.10 0.07 0.91 0.13 0.26 0.10 0.41 0.77 0.06 0.04 0.47 1.21 0.44

ρ (%) 91.11 62.53 85.71 77.50 90.14 66.60 91.69 85.42 91.67 93.62 42.90 44.47 77.79 96.22 91.67
aAssess12: assessment for triage 1 and 2. Assess34: assessment for triage 3 and 4. CT computed tomography scan. Tre1: Treatment 1. Tre2: Treatment 2
bλ the arrival rate, µ the served rate, Ls Average number of people in the system, Lq Average length of the queue or the average number of people in a line awaiting
service, Ws Average time for a customer in the system (waiting time plus service time),Wq Average waiting time or the average length of time that a customer waits
before being served, ρ utilization factor for the system
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pitfall in managing MCIs. In event A, an excessive num-
ber of nurses and inadequate physician manpower were
observed in this study. Thus, the queueing network
could be used as a tool to analyze the factors influencing
the length of stay in the ED in different types of MCIs.

Applying queueing network to estimate manpower and
to reach balanced efficiency
In addition to the balance between surge capacity and
SRC, the balance between urgency and efficiency should be
considered when managing MCIs in the ED. Studies on
fast track intervention for less urgent patients [24] showed
that reducing waiting times could achieve high efficiency
[25]. The queueing model showed us that seven servers
(physicians) should be activated as the most efficient in
managing patients in event A (working treatment station
one and two, i.e., patients of triage three and four, 88% of
all victims). Thus, the addition of more servers, in this case,
physicians, as suggested by the queueing model, could en-
sure that efficiency is guaranteed in the urgent situation.
In addition to physician manpower, nursing plays a critical

role in determining hospital costs care quality, and patient
satisfaction [26]. The minimum nurse-to-patient ratio is the
most commonly used method to determine nurse staffing
levels [27]. Queueing models, such as which is presented in
the present study, can flexibly capture the stochastic nature
of surge capacity during an MCI; therefore, it may be a good
tool for determining nurse staffing levels during emergency
events. If λ can be precisely estimated, queueing models can
help a hospital manager to determine how many and to
what extent medical staff should be alerted.
When a queueing network is applied, the general object-

ive is to achieve maximum efficiency in a working system.
However, some lessons can be learned from the excessive
availability of medical staff in event B. More servers (e.g.,
doctors, nurses.) were available than were required to
achieve the maximum efficiency calculated by the queueing
network. Although the efficiency of each server is de-
creased when more servers are added, however, the partici-
pating servers may feel less stress, their workloads may
lighten, and efficient patient flow is still achieved. Further-
more, health care providers pulled from other departments
into ED could hazard the patient safety as well. Therefore,
“balanced efficiency” could be a better approach than max-
imum efficiency to cope with surges during MCIs. Using a
queueing network, the most efficient working situation can
be calculated. Since the model is a flexible tool, the number
of servers can be increased to reduce stress and workloads
without marked losses in efficiency.

Applying queueing network to cope with MCIs in
different EDs
In event B, the lengths of stay in the ED were influenced
by the output time intervals. In this event, the median

output time (time interval between the disposition deci-
sion and patient discharge) was 56min (15.3–117.3, IQR)
[22]. Such a short output time does not delay patient ad-
mission and higher efficiency can be achieved by provid-
ing fewer servers, as predicted by QT. As stated in the
2006 Academic Emergency Medicine Consensus Confer-
ence, “Key leadership for surge capacity planning and re-
sponse varies by locality and is generally not well defined.”
The same conference found that “no studies have sug-
gested how leadership should be adapted in response to
various types of events.” [28] Therefore, a queueing net-
work may be a useful tool in coping with different types of
MCIs in different EDs for SRC estimation.
We suggest that the queueing network could be used

in the planning section of the hospital emergency inci-
dent command system (HEICS). The functions of the
planning section are to collect, evaluate, and disseminate
incident situation information and intelligence to Inci-
dent command. Collecting the queuing network vari-
ables in historical MCI cases could be a scientific mean
in hospital emergency management programs. The plan-
ning chief could develop an action plan for operation by
using queueing network during a disaster incident.

Limitations
One oversimplified limitations for which the queueing
model is often criticized is its assumptions on working
time in each station [29]. These assumptions must be
considered according to the staffing availability of indi-
vidual hospitals. Therefore, the numbers related to how
many medical staff should be alerted in the present can-
not be directly applied to other hospitals. However, this
limitation does not interfere with the applicability of the
queueing network model to different MCIs or hospitals.
A second limitation is that this study is a retrospective
study in the ED; therefore; the data retrieval process
may be less precise than what would be ideal. Building
an accurate queueing model for ED systems in coping
with MCIs is challenging. Despite the care taken when
extracting records from the electronic data base, data of
two victims from event B were clearly inaccurate, and
we have to exclude these patients from this study. In-
complete or inaccurate records, and unavailable or cen-
sored data may be obtained in the rush to address MCIs.
The above limitations may result in unrealistic data in-
puts, thereby influencing modeling accuracy and the val-
idity of our results. Therefore, caution should be
observed when applying these results. Third, nonhuman
resource management was not included or discussed in
this study. Fortunately, as the SRC of CGMH is fairly
large, so this lack of consideration of nonhuman re-
sources does not influence the outcomes of our queue-
ing network analysis [29]. Fourth, the lack of data of
patient outcome and cost of the increase of manpower
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limit the detailed cost-effectiveness comparison in this
study. Fifth, we have no outflow data such as time to OR
or ICU in our dataset, which could serve as the bottle-
necks during the MCIs. Sixty, we do not have any de-
tailed severity scores that could divide patients into
more detailed severity stratum. Lastly, this study was
conducted in a tertiary teaching hospital. The Chang
Gung Memorial Hospital in Linkou (CGMH) is a
3700-bed hospital with 12,000 monthly ED visits, and
much of its reserved SRC cannot be employed in other
smaller hospitals. These reserved surge resources, in-
cluding rapid admission of patients to the suitable
wards, would diminish the ongoing effect of arrival rate
on a patient’s length of stay. Further studies are merited
for the generalizability.

Conclusions
A queueing network is a flexible and efficient tool that can
be used in different MCIs to confirm the balance between
surge capacity and SRC. It can also be applied to improve
balanced efficiency when coping with MCIs. Balanced effi-
ciency may be more advantageous than the best fitted re-
sults, i.e. the most efficiency that was calculated by the
queueing network. Efficiency and appropriate human re-
sources can be considered as coexisting in the most ideal
situation when a queueing network is applied.
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