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Abstract

Background: In the initial hours after out-of-hospital cardiac arrest (OHCA), it remains difficult to estimate whether
the degree of post-ischemic brain damage will be compatible with long-term good neurological outcome. We
aimed to construct prognostic models able to predict good neurological outcome of OHCA patients within 48 h
after CCU admission using variables that are bedside available.

Methods: Based on prospectively gathered data, a retrospective data analysis was performed on 107 successfully
resuscitated OHCA patients with a presumed cardiac cause of arrest. Targeted temperature management at 33 °C
was initiated at CCU admission. Prediction models for good neurological outcome (CPC1–2) at 180 days post-CA
were constructed at hour 1, 12, 24 and 48 after CCU admission. Following multiple imputation, variables were selected
using the elastic-net method. Each imputed dataset was divided into training and validation sets (80% and 20% of
patients, respectively). Logistic regression was fitted on training sets and prediction performance was evaluated on
validation sets using misclassification rates.

Results: The prediction model at hour 24 predicted good neurological outcome with the lowest misclassification rate
(21.5%), using a cut-off probability of 0.55 (sensitivity = 75%; specificity = 82%). This model contained sex, age, diabetes
status, initial rhythm, percutaneous coronary intervention, presence of a BIS 0 value, mean BIS value and lactate as
predictive variables for good neurological outcome.

Discussion: This study shows that good neurological outcome after OHCA can be reasonably predicted as early as
24 h following ICU admission using parameters that are bedside available. These prediction models could identify
patients who would benefit the most from intensive care.
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Background
Despite improvements in advanced life-support and efforts
to improve the quality of post-resuscitation care, in-hospital
survival after out-of-hospital cardiac arrest (OHCA) re-
mains poor. Within the current post-cardiac arrest (CA)
period, outstanding though expensive treatment strategies
exist for all comatose patients successfully resuscitated after
OHCA [1–4]. Especially within this time period, the

uncertain prognosis of OHCA patients fuels the continuous
drive of physicians to identify those patients who will bene-
fit the most from aggressive intensive care. Therefore, any
argument in favour of good outcome could support the
critical decision to use all ICU resources in those patients.
Moreover, healthcare workers continuously encounter the
optimistic expectations of relatives, and so providing any
early information about the likelihood of a good outcome
could facilitate communication with patients’ next of kin.
Before the era of targeted temperature management

(TTM), a careful interpretation of the clinical neurological
examination was considered as the gold standard to deter-
mine the prognosis in comatose OHCA survivors [5].
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With the implementation of TTM and its concomitant use
of sedatives, specific clinical signs have become unreliable
for outcome prediction within the initial 24 h [4, 6]. Mul-
tiple prognostic markers have been introduced to aid with
poor outcome prognostication after OHCA, but do not
possess enough discriminatory power on their own to
predict outcome (i.e. electroencephalography (EEG), som-
atosensory-evoked potentials (SSEPs), biochemical markers
and brain imaging). Besides, these are not always continu-
ously or sometimes only locally available, are expensive, la-
borious and above all, require expertise for reliable
interpretation [4, 6–8]. Early outcome prognostication
should therefore perhaps focus on good rather than poor
outcome prediction, especially since guidelines state that
the decision to withdraw life-sustaining therapy should be
postponed to at least 72 h after CA. Models for the predic-
tion of neurological outcome have been described previ-
ously, but use often variables that are rather ambiguous or
unavailable at the bedside [9–14]. A prediction model, cap-
able of estimating the probability on good outcome in the
early hours based on parameters that are bedside available,
could be of major interest for physicians to identify those
patients with a reasonable chance of recovery. Addition-
ally, these prediction models might also provide assistance
for patient stratification in future randomized controlled
trials or epidemiological studies. Therefore, this retro-
spective study aimed to develop prognostic models –
using a training and (internal) validation set – to predict
good neurological outcome as soon as possible in OHCA
patients using variables that are bedside available after
ICU admission.

Methods
Study population
All consecutive adult comatose survivors who were suc-
cessfully resuscitated from OHCA and admitted to the
Coronary Care Unit (CCU) of our tertiary care hospital
(Ziekenhuis Oost-Limburg, Genk, Belgium), were pro-
spectively enrolled between March 2011 and May 2015.
Exclusion criteria were an obvious non-cardiac cause of
arrest, in-hospital cardiac arrest and inadequately per-
formed TTM at 33 °C. A head computed tomography
(CT) scan was performed if no obvious cause of arrest
was found. In this patient cohort, we previously investi-
gated the prognostic value of Near-Infrared Spectroscopy
(NIRS) and BIS monitoring, which are neuromonitoring
tools known for their non-invasiveness, ease of use and
bedside availability [15, 16]. Based on these prospectively
gathered data, this retrospective study aimed to construct
multivariate prediction models for good neurological out-
come using these non-invasive cerebral parameters in
conjunction with other variables that are readily available
following CCU admission. The study protocol was ap-
proved by the local Committee for Medical Ethics (11/

066). Written informed consent was obtained from the
patients’ next of kin and was reconfirmed if the patient
regained consciousness.

Post-resuscitation protocol
Our institutional post-resuscitation protocol has been de-
scribed elsewhere [15, 17]. All patients were intubated,
mechanically ventilated and sedated by intravenous admin-
istration of remifentanil and propofol or midazolam. Unless
an obvious non-cardiac cause of arrest could be identified,
urgent coronary angiography was performed by interven-
tional cardiologists, followed by a percutaneous coronary
intervention. Immediately after admission to the emer-
gency department, TTM at 33 °C was initiated by adminis-
tering cold saline intravenously (4 °C – 15-30 ml/kg). Once
admitted at the CCU, TTM was further mechanically in-
duced and maintained at 33 °C for 24 h using endovascular
(Icy-Catheter, Coolgard® 3000, Alsius, Irvine, CA, USA) or
surface (ArcticGel™ pads, Arctic Sun® 5000, Medivance,
Louisville, Colorado, USA) cooling systems. Hereafter, pa-
tients were rewarmed over the next 12 h (0.3 °C/hour). All
systems were equipped with a feedback loop system to con-
trol target temperature using an oesophageal temperature
probe. Only in case of muscle shivering, cisatracurium was
administered. Within the TTM period, sedation was ti-
trated to obtain values between − 3 and − 5 on the Rich-
mond Agitation-Sedation scale. Cannulation of the radial
artery ensured a continuous registration of blood pressure.
Placement of a pulmonary artery catheter was left at the
discretion of the treating physician and provided informa-
tion about mixed venous blood oxygen saturation. Accord-
ing to the guidelines, mean arterial pressure was strictly
maintained above 65 mmHg using norepinephrine [18].
Additionally, an hourly blood gas analysis was performed
including the determination of lactate. From February 2012
onwards, neuron-specific enolase (NSE) was determined at
hour 24 and 48 following CCU admission. Patients were
extubated when their neurological, respiratory and
hemodynamic status had been recovered sufficiently.

Neuromonitoring
Cerebral tissue oxygen saturation (SctO2) was continu-
ously measured using FORE-SIGHT™ technology (CAS
Medical systems, Branford, CT, USA) for 72 h following
CCU admission. Furthermore, Bispectral Index (BIS)
monitoring using the BIS VISTA™ (Aspect Medical Sys-
tems, Inc. Norwood, USA) was started as soon as possible
and continued up to 72 h. Both NIRS and BIS sensors
were bilaterally placed on the forehead before the start of
TTM and covered to prevent ambient light interference.
According to manufacturer’s instructions, the BIS sensor
was placed above the eyebrows and NIRS sensors were
positioned above the BIS sensor. It needs to be stressed
that NIRS sensors should not be placed at a place where
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they are at risk to lose connection with the skin (e.g. on
the hairline). Therefore, in patients with a limited amount
of space on the forehead to place both NIRS and BIS sen-
sors (due to a lower hairline), priority was given to NIRS,
ignorant which of both parameters contained the highest
prognostic power. Obviously, this clarifies the high degree
of missingness of BIS data in our entire study cohort. To-
gether with hemodynamic data, SctO2 was collected with
a 2 s time interval and BIS data was stored every second.
Although treating physicians were not blinded to the re-
corded NIRS and BIS values, therapeutic interventions
were performed according to the guidelines and at the
discretion of the treating physician. As such, the collected
NIRS and BIS data were solely being collected for research
purposes and were not being used to guide therapeutic
interventions or to assist with the process of
neuroprognostication.

Outcome assessment
At 180-days post-CA, surviving patients were interviewed
at follow-up by attending cardiologists. These medical re-
ports were retrospectively assessed by a single assessor
(W.E.) who defined patients’ outcome using the Cerebral
Performance Category (CPC) scale. No outcome data was
missing. According to the scale classification, CPC 1 indi-
cates good cerebral performance; CPC 2 signifies a moder-
ate disability but sufficient cerebral functioning for
independent daily-life activity; CPC 3 implies severe dis-
ability with dependency on others; CPC 4 indicates coma
or vegetative state and CPC 5 stands for death [19]. A
CPC1–2 and CPC3–5 was considered as a good and a
poor neurological outcome, respectively.

Statistical analysis
Prediction models for good neurological outcome at
180 days post-CA (CPC1–2) were constructed at hour 1,
12, 24 and 48 after CCU admission (Fig. 1). Variables con-
sidered to be included at all time points were: sex, age,
diabetes status, witnessed arrest, initial rhythm (with asys-
tole as reference category), percutaneous coronary inter-
vention, initial lactate, initial haemoglobin, initial
creatinine, mean arterial pressure, BIS value of 0, mean
BIS, mean cerebral oxygen saturation. Along with these
variables, the following parameters were considered to be
included: lactate, haemoglobin, creatinine and mixed ven-
ous oxygen saturation levels at the respective time points.
Furthermore, NSE was considered at hour 24 and 48.
To account for missing variables, multiple data imput-

ation was performed. Predictive mean matching imput-
ation was used for continuous variables and logistic
regression with bootstrap was performed to impute binary
variables. For categorical variables with more than two
levels, polytomous logistic regression was used to impute
[20]. The number of imputations was equal to the

percentage of missingness at each data set for four differ-
ent time points [21]. The elastic-net method was then
used to perform variable selection for all imputed datasets
[22]. Variables repeatedly retained in more than 50% of
the imputed datasets were chosen for model fitting. To se-
lect the optimal values of the elastic-net penalty α and the
tuning parameter λ, ten-fold cross-validation was used.
The logistic regression model could be specified as:

log
P Y i ¼ 1ð Þ

1−P Y i ¼ 1ð Þ
� �

¼ β0 þ
Xp
j¼1

β1Xij

Where j (1, p) is the j predictor included in the model
and i = 1, n is the number of observations in each im-
puted data set and P(Yi = 1) is the probability of survival
for patient i.
Once the variables were selected, the performance

of the final multivariate logistic regression was
assessed for each imputed dataset and results were
pooled to make final inference for data at each time
point. Each imputed dataset was randomly divided
into a training set (80% of patients) and a validation
set (20% of patients). Logistic regression was fitted on
the training sets and the prediction performance of
the resulting model was evaluated on the validation
sets by means of misclassification rates (i.e. percent-
age of cases misclassified; Fig. 1). For this purpose,
diverse cut-off points were prespecified. Logistic re-
gression was fitted on all imputed datasets per time
point with cut-off points ranging from 0.10 to 0.90 by
an increment of 0.05. When the calculated probability
from logistic regression was larger than the chosen
cut-off point, the patient was categorized as survival
(CPC1–2). The corresponding sensitivities and speci-
ficities were calculated. Cut-off points that produced
both a sensitivity and specificity larger than 70% were
chosen. After the cut-off points were determined, the
performance of the final (multivariate) logistic regres-
sion models constructed at the four time points was
assessed by means of the misclassification rate. The
optimal cut-off point for each time point was the one
with the smallest misclassification rates. Additionally,
the area under the receiver operating characteristics
curve (AUROC) was calculated for each imputed data
set and pooled per time point. We used R 3.2.1 stat-
istical software (R Foundation for Statistical Comput-
ing, Vienna, Austria) for multiple imputation, model
selection and SAS Software version 13.2 (SAS, Cary,
NC, USA) for pooling the results over the different
imputed data sets using logistic regression.

Results
Between March 2011 and May 2015, 147 successfully re-
suscitated comatose OHCA patients, admitted to the
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emergency department and transferred to the Coronary
Care Unit, were screened for eligibility. Data of 25 pa-
tients were excluded due to the following ineligibility
reasons: cooling with mattress (n = 8), in-hospital cardiac
arrest (n = 10), drowning/hanging (n = 3), no TTM at
33 °C (n = 4). Furthermore, 15 out of 122 eligible pa-
tients were not retained for final data analysis due to the
following reasons: coronary-artery bypass graft surgery

at day 2 (n = 1) and not included due to no storage of
(continuous) hemodynamic, SctO2 and BIS data (n = 14).
In total, 107 successfully resuscitated comatose OHCA
patients with a cardiac cause of arrest were included for
data analysis of whom 50 (47%) had a good (CPC1–2)
and 57 (53%) a poor neurological outcome (CPC3–5) at
180 days post-CA. Demographic data of all included pa-
tients are provided in Table 1. Prediction models for

Fig. 1 Development of prediction models and calculation used to predict good neurological outcome at hour 24. This flowchart demonstrates
the developmental process of the constructed prediction models at selected time points following CCU admission. Twenty-four hours after CCU
admission, good neurological outcome was predicted with the lowest misclassification rate (i.e. the optimal model; top of figure). The probability
for good neurological outcome can be calculated using the correlation coefficients from all variables (bottom of figure). For example, an 84-year
old female patient without diabetes, successfully resuscitated from an OHCA with ventricular fibrillation as initial rhythm, was admitted to the
emergency department and was transferred to the catherization lab where she received a percutaneous coronary intervention. Twenty-four hours
after CCU admission, she did not experienced a BIS value of 0, mean BIS over 24 h was 46 and lactate was 1.2 mmol/l. Based on the formula, the
calculated probability of good neurological outcome in this patient would be 0.68 which is higher than the proposed cut-off probability of 0.55.
In this specific patient, good neurological outcome can be predicted with a sensitivity of 75% and specificity of 82%
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good neurological outcome at 180 days post-CA were
constructed at hour 1, 12, 24 and 48 after CCU admis-
sion. As two patients died before hour 12, 105 patients
were retained for the models at hour 12 and hour 24.
Ten patients died between hour 24 and hour 48,

resulting in 95 patients who were retained for the model
at hour 48.
In total, 13, 17, 18 and 18 variables were considered

in the prediction models at hour 1, 12, 24 and 48, re-
spectively (Table 2). Based on the elastic-net method,
5, 9, 8 and 7 variables were retained in the models at
hour 1, 12, 24 and 48, respectively. Variables retained
in all prediction models were diabetes, initial rhythm,
percutaneous coronary intervention, mean BIS value
at the respective time point and the presence of a
BIS 0 value within the respective time frames. Lactate
and sex were present at hour 12, 24 and 48, while
age was only retained at hour 12 and 24 following
CCU admission. In addition, creatinine was predictive
for good neurological outcome at hour 12 after CCU
admission. NSE was determined at hour 24 and 48,
but was only retained in the model at hour 48. Mean
SctO2 values were not present at a single time point
(Table 2).
Multivariate logistic regression was performed and

results were pooled for each time point (Table 2).
The pooled χ2 of the Hosmer and Lemeshow test for
the prediction model at hour 1, 12, 24 and 48 was
0.95, 0.90, 0.96 and 0.99, respectively, indicating a
good fit for all models. Then, the performance of all
prediction models was assessed by means of the mis-
classification rate, where the most optimal model is
considered as the one generating the lowest misclassi-
fication rates. All models predicted good neurological
outcome with a sensitivity and specificity above 70%

Table 1 Demographics

Parameter Survivors
(CPC1–2)

Non-survivors
(CPC3–5)

P-value

Patients, n (%) 50 (53) 57 (47) /

Age, mean (±SD) 61 ± 13 65 ± 13 0.058

Male, n (%) 39 (78) 36 (63) 0.094

Surface cooling, n (%) 25 (50) 36 (63) 0.178

Endovascular cooling, n (%) 25 (50) 21 (37) 0.178

Initial rhythm

Ventricular fibrillation, n (%) 42 (84) 26 (46) < 0.001

Pulseless electrical activity, n (%) 4 (8) 7 (12) 0.527

Asystole, n (%) 4 (8) 20 (35) < 0.001

Witnessed arrest, n (%) 45 (90) 46 (81) 0.246

Coronary angiography, n (%) 46 (92) 41 (72) 0.012

Percutaneous coronary
intervention, n (%)

36 (72) 22 (39) 0.001

Mean SctO2

At hour 1 64 ± 7 66 ± 6 0.184

At hour 12 65 ± 6 64 ± 5 0.588

At hour 24 68 ± 5 66 ± 6 0.09

At hour 48 71 ± 5 72 ± 6 0.779

Significant values (p<0.05) are indicated in bold

Table 2 Prediction models with retained variables at the four time points following ICU admission

Variables Hour 1 (χ2 = 0.95) Hour 12 (χ2 = 0.90) Hour 24 (χ2 = 0.96) Hour 48 (χ2 = 0.99)

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value

Intercept −4.462 (1.258) < 0.001 −1.213 (2.297) 0.598 − 3504 (2.242) 0.118 − 1.124 (1.544) 0.467

Female – – −1.819 (0.843) 0.031 −1.244 (0.763) 0.103 −1.622 (0.939) 0.085

Age – – −0.032 (0.028) 0.245 −0.025 (0.025) 0.332 – –

Absence of diabetes 1.196 (0.725) 0.099 1.673 (0.982) 0.089 2.014 (0.977) 0.039 1.880 (1.176) 0.110

Initial rhythm

Ventricular fibrillation 2.213 (0.734) 0.003 0.653 (0.915) 0.475 1.204 (0.872) 0.168 0.717 (0.960) 0.455

Pulseless electrical activity 0.861 (0.972) 0.376 −1.456 (1.234) 0.238 −0.139 (1.228) 0.910 −0.504 (1.387) 0.716

No PCI −0.776 (0.553) 0.160 −0.630 (0.752) 0.402 −0.210 (0.662) 0.751 −0.315 (0.734) 0.668

Absence of BIS value of 0 1.966 (0.751) 0.009 3.717 (0.942) < 0.001 3.139 (0.898) 0.001 2.878 (0.942) 0.002

Mean BIS at respective hour 0.017 (0.014) 0.231 0.027 (0.016) 0.085 0.033 (0.019) 0.092 – –

Lactate at respective hour – – −0.219 (0.187) 0.242 − 0.216 (0.235) 0.358 − 0.136 (0.533) 0.799

Creatinine at respective hour – – −0.331 (0.310) 0.287 – – – –

NSE – – −0.023 (0.016) 0.153

BIS Bispectral Index,NSE Neuron-specific enolase, PCI Percutaneous coronary intervention, SE Standard error, χ2 chi-square statistic indicating the goodness-of-fit
These are the final multivariate logistic regression models with retained variables based on the elastic-net method
• Variables considered to be included at all time points: sex, age, diabetes status, witnessed arrest, initial rhythm (with asystole as reference category), PCI, initial
lactate, initial haemoglobin, initial creatinine, mean arterial pressure, BIS value of 0, mean BIS, mean cerebral oxygen saturation
• Variables considered to be included at hour 12, 24 and 48: lactate, haemoglobin and creatinine and mixed venous oxygen saturation at respective time points
• Variable considered to be included at hour 24 and 48: NSE at respective time points
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(Table 3). However, the prediction model at hour 24
predicted good neurological outcome with the lowest
misclassification rate (21.5%; 95% CI: 19.5–23.5) using
a cut-off probability of 0.55 (Mean AUROC = 0.918.
Fig. 1).
The probability (P) of survival at hour 24 following

CCU admission can be calculated using the following
equation:

Log P̂ Survivalð Þ= 1� P̂ Survivalð Þ� �� � ¼
� 3:504 interceptð Þ
� 1:244 if patient is femaleð Þ
� 0:025x age of patient
þ 2:014 if diabetes is absentð Þ
þ 1:204 if initial rhythm is ventricular fibrillationð Þ�
� 0:139 if initial rhythm is pulseless electrical activityð Þ�
�asystole as initial rhythm was set as reference category
� 0:210 if no percutaneous coronary intervention was performedð Þ
þ 3:139 if a BIS value of 0 was absent within the first 24 hoursð Þ
þ 0:033x mean BIS value at hour 24
− 0:216x lactate value at hour 24

Using this cut-off point of 0.55, the prediction model
at hour 24 predicted good neurological outcome with a
sensitivity of 75.3% (95% CI: 72.1–78.2) and specificity of
82.2% (95% CI: 79.3–85.1) (Fig. 1).
At hour 24, missingness was present in 12 variables,

namely initial haemoglobin (0.9%), diabetes (1.9%), wit-
nessed arrest (2.8%), initial Rhythm (3.7%), initial lactate
(8.4%), initial creatinine (8.4%), mean MAP at hour 24
(9.5%), mean SvO2 at hour 24 (21%), NSE (26.7%), BIS 0
value (27.6%) and mean BIS value at hour 24 (38.1%).
Missingness at the other time points is shown in Table 4.

Discussion
Our data show that good neurological outcome at
180 days post-CA can be predicted in successfully resus-
citated comatose OHCA patients treated with TTM at
33 °C using prediction models containing variables that

are early and bedside available after CCU admission. In
order to predict good neurological outcome as early as
possible, multilevel prediction models were constructed
at hour 1, 12, 24 and 48 after CCU admission which all
reached a sensitivity and specificity above 70%. Using a
cut-off point of 0.55, the prediction model at hour 24
predicted good neurological outcome with the smallest
misclassification rate, corresponding to a sensitivity of
75% and specificity of 82%.
Identifying post-CA patients who would maximally

benefit from full supportive therapy without unnecessary
suffering remains hard to achieve once admitted to the
ICU. Nowadays, specific clinical signs in the initial 24 h
have become inaccurate due to the implementation of
TTM [4, 6]. Electro-encephalography, SSEPs, biomarkers
and brain imaging are prognostic tools recommended by
current guidelines to assist with outcome prognostica-
tion, but are often not constantly available in daily clin-
ical practice, are time-consuming, expensive and require
clinical expertise [4, 23–26]. In an attempt to account

Table 3 Prediction performance of the four prediction models

Cut-off
probability

Misclassification rate Sensitivity Specificity

H1 H12 H24 H48 H1 H12 H24 H48 H1 H12 H24 H48

0.45 26.2 (9.1) 22.9 (8.0) 21.8 (8.2) – 75.2
(12.5)

78.4
(12.2)

79.8
(12.4)

– 70.8
(14.9)

76.2
(11.8)

77.4
(13.2)

–

0.50 25.3 (9.2) 22.5 (8.2) 21.5 (8.2) – 72.9
(12.8)

76.5
(12.8)

77.6
(12.9)

– 77.4
(13.7)

78.9
(11.6)

79.9
(12.6)

–

0.55 24.8
(9.2)

22.3
(8.3)

21.5
(8.4)

23.7 (9.6) 70.5
(13.1)

74.1
(13.5)

75.3
(13.6)

78.6
(14.2)

74.3
(14.4)

81.5
(11.3)

82.2
(12.3)

74.6
(15.6)

0.60 – – – 23.4 (9.5) – – – 76.8
(14.4)

– – – 77.2
(15.0)

0.65 – – – 23.3
(9.4)

– – – 74.6
(14.6)

– – – 77.4
(13.2)

Misclassification rate is the percentage of cases misclassified. The optimal cut-off probability yielding the smallest misclassification rate is indicated in bold for
each time point. Misclassification rate, sensitivity and specificity are presented in percentage (standard errors)

Table 4 Percentage of missingness at the four time points
following ICU admission

Variables Hour 1 Hour 12 Hour 24 Hour 48

Mean MAP 11.2% 7.6% 9.5% 23.2%

Mean BIS 34.6% 35.2% 38.1% 46.3%

Absence of BIS 0 33.6% 26.7% 27.6% 25.3%

Mean SvO2 / 21.9% 21.0% 25.3%

NSE / / 26.7% 27.4%

Creatinine 8.4% 2.9% X 9.5%

Lactate 8.4% X X 4.2%

Mean SctO2 X X X 21.1%

Creatinine and lactate value at hour 1 had the similar percentage of missingness
across all time points (both with 8.4%). Missing variables with less than 5% of
missingness were initial haemoglobin (1.0%), diabetes (1.9%), witnessed arrest
(2.8%) and initial rhythm (3.7%)
/ variable not included in the respective model
X no missingness
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for these hurdles and facilitate bedside prognostication,
we previously investigated the role of NIRS and BIS
monitoring in terms of outcome prediction [15, 16, 27].
This retrospective analysis now aimed to construct
multivariate regression models including these cerebral
parameters combined with variables, readily available at
ICU admission, in order to predict good neurological
outcome after OHCA. Unlike scoring systems developed
by others, we decided to ignore ambiguous variables
such as ‘low-flow’ and ‘no-flow’ times as these are often
unknown or incorrectly reported [9–14]. In this study,
the constructed prediction models at hour 1, 12, 24 and
48 after admission succeeded to predict good neuro-
logical outcome at 180 days post-CA, all with a sensitiv-
ity and specificity above 70%. The model which
classified OHCA patients with the lowest misclassifica-
tion errors was the one at hour 24 and contained sex,
age, diabetes status, initial rhythm, percutaneous coron-
ary intervention, the absence of a BIS 0 value within the
first 24 h, mean BIS value at hour 24 and lactate as pre-
dictive variables for good neurological outcome. This
model was able to predict good neurological outcome
with a sensitivity of 75% and specificity of 82% when
0.55 was used as cut-off point. It has to be stated that
the obtained predictive performance of our model
should be considered as rather modest. Hence, we cer-
tainly do not advise the use of our prediction models to
assist with the clinical prognostication process at the
moment. On the contrary, external validation in a large
patient cohort without missing data will be a prerequis-
ite before clinical implementation will be possible. Add-
itionally, further research attempts should now
investigate whether the performance of our constructed
prediction models could be improved by adding other
prognostic parameters. Therefore, our research findings
might be considered as one of the first steps in the de-
velopment of an easy tool, that is able to identify OHCA
patients who might benefit the most from aggressive
treatment, and for whom finite healthcare sources
should be optimized. For now, our models might be of
potential interest as guidance for designing risk stratifi-
cation models in clinical research with variable resource
allocation or could be used to enhance future research
initiatives focusing on new therapies. Additionally, the
results of this study could be helpful for the design of fu-
ture epidemiological studies as it is often difficult to se-
lect which data should be assembled and when these
should optimally be collected after CCU admission [28].
As shown by others, initial rhythm, percutaneous coron-

ary intervention and diabetes status prior to CA were
variables retained at all selected time points in this study
[29–31]. Likewise, both mean BIS values and the absence
of a BIS 0 value appear to be predictors for good neuro-
logical outcome across all time points, thereby confirming

the prognostic validity of BIS monitoring in the post-CA
setting once again [16, 27, 32–34]. In line with previous
studies, gender, age as well as lactate and creatinine levels
were predictive for good neurological outcome, albeit not
immediately following ICU admission [35–38]. Finally,
NSE was only retained in the model at hour 48 which is in
accordance with previous studies [25, 39].
In recent years, the prognostic value of SctO2 has been

examined thoroughly in the post-CA setting. Several
studies demonstrated that high SctO2 values during
TTM at 33 °C were associated with a higher likelihood
of favourable neurological outcome [17, 40]. Storm and
co-authors even suggested a SctO2 value of 50% as
therapeutic target [41]. In the largest post-resuscitation
cohort so far, we previously showed that the overall
course of SctO2 was different between OHCA patients
with a good and poor neurological outcome. Nonethe-
less, the observed SctO2 margin seemed to be too nar-
row to likely represent outcome differentiation. As such,
it was concluded that SctO2 lacked prognostic power on
its own to serve in outcome prognostication [15]. The
role of SctO2 as prognostic marker included in a multi-
variate prediction model, on the other hand, has not
been investigated until now. Based on our analysis, we
are the first to show that SctO2 was not retained in any
multivariate regression model at a single time point
upon CCU admission. Therefore, this study illustrates
once more the limited prognostic value of SctO2 by itself
in the early hours following ICU admission.
This study has several limitations. First, this was a

single-centre study with a limited number of patients in-
cluded. Secondly, multiple imputation was used to ac-
count for missingness in certain variables. Nevertheless,
imputed values were deemed as persuasive based on the
generated density plots of the observed and imputed
data (not shown). On the other hand, a possible selection
bias could not have been excluded if only the cases were
included with all available parameters. Still, it should be
recognised that in some variables, including the SvO2,
missingness might not have been completely at random.
Although the placement of a pulmonary artery catheter
was left at the discretion of the treating physician, it
might have been the case that these catheters were
placed in clinically more unwell patients, meaning that
missing values could have been systematically higher
than recorded values. A pulmonary artery catheter was
placed in 35 out of the 50 patients with a good neuro-
logical outcome (70%) and in 47 out of the 57 patients
with a poor neurological outcome (82%). Third, BIS
monitoring might not be routinely applied in other cen-
tres which might complicate the usefulness of our pre-
diction models. Nonetheless, BIS monitoring is
cost-effective, non-invasive and can be made available at
the bedside rather easily. On the other hand, BIS data

Eertmans et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine           (2018) 26:93 Page 7 of 9



were not kept blinded for treating physicians through
which we cannot fully exclude the possibility that the
prognostic value of BIS was being artificially inflated
during the study period. Nonetheless, treating physicians
were cardiologists who are not familiar with the use and
interpretation of BIS values. Finally, our prediction
models were only validated internally. Even though it
has been shown that n-fold cross validation generates
stable estimates with low bias, external validation on an
independent data set will be mandatory before these
models can be used in routine clinical practice [42].

Conclusion
Prognostic models for the prediction of survival in OHCA
patients were constructed at hour 1, 12, 24 and 48 follow-
ing CCU admission. The prediction model which classi-
fied OHCA patients with the lowest misclassification
errors was the one at hour 24, yielding a sensitivity of 75%
and specificity of 82%. In this model, sex, age, diabetes sta-
tus, initial rhythm, percutaneous coronary intervention,
the presence of a BIS 0 value, mean BIS value and lactate
were the variables identified as predictive for good neuro-
logical outcome. At the moment, external validation in a
larger patient cohort will be mandatory before this model
can be translated into clinical practice.
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