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but is often lacking. Previous studies have shown that a 
probability distribution of spatial incidence of OHCA 
can be used as input to analytical models to find the best 
locations for AEDs [14–16]. In addition, identifying geo-
graphical areas that have disproportionally many non-
survivors compared to survivors (and vice versa) allows 
for further specific targeting interventions to increase 
survival, like local public awareness campaigns.

Previous spatial analysis methods have provided sig-
nificant, but limited insight. Recent studies that analysed 
spatial or spatiotemporal OHCA risk used spatial analy-
sis methods [17–19] or Bayesian methods [20–25]. All 
these methods require aggregating data in spatial cells 
or administrative areas, which means that results and 
granularity are influenced by that choice. Furthermore, 
several studies investigated how the spatial distribution 
developed over the years [19–22]. It is known that tem-
poral (in)accessibility of AEDs is an important aspect in 
effective defibrillation by bystanders [10]. Additionally, 
(spatial) availability of volunteer responders may depend 
on the time of day, as people go to work and change loca-
tions throughout the day. Therefore, we are interested 
in how spatial incidence develops throughout the day, 
instead of over the years.

The objective of this study was to propose a methodol-
ogy (1) to analyse how incidence of OHCA is distributed 
throughout a study region, (2) to analyse how incidence 
changes over time of day, and (3) to identify which areas 
have significantly more survivors or non-survivors and 
explore to what extend basic case characteristics explain 
any difference found. We applied this method to a case 
study of OHCA in Amsterdam, the Netherlands, to show 
how the method works in practice.

Introduction
Improving survival from out-of-hospital cardiac arrest 
(OHCA) is an important public health challenge. Overall 
survival is low and varies widely per country [1, 2]. Over 
the years, actions to improve survival have targeted dif-
ferent aspects in the chain of survival [3]. These actions 
often focus on logistics to provide rapid basic life sup-
port (BLS) and defibrillation [4]. For example, volunteer 
responder systems (VRS) have been implemented in sev-
eral countries, dispatching trained volunteer respond-
ers to start cardiopulmonary resuscitation (CPR) with 
the use of automated external defibrillators (AED) [5, 6]. 
These systems have been shown to increase CPR before 
ambulance arrival, decrease time to first defibrillation, 
and increase survival rates for OHCA patients [7, 8].

A good understanding of where and when OHCAs 
occur is important for effectively directing public health 
resources aimed at improving survival. To fasten defi-
brillation by bystanders or volunteer responders, public 
access defibrillators need to be positioned close to the 
OHCA and need to be accessible at all times [9–13]. 
Therefore, insight into the spatial and spatiotemporal 
incidence of OHCA is crucial to place AEDs effectively, 
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Methods
Setting
This study screened all resuscitation attempts for OHCA 
with presumed cardiac cause in the municipality of 
Amsterdam during the period 2006–2016. When an 
emergency call was made to the dispatch centre because 
of an OHCA, both first responders (police and fire fight-
ers) and two ambulances were dispatched to the scene. 
Police and fire fighters were trained in BLS and vehicles 
were equipped with AEDs. During the study period 
supraglottic airway devices were increasingly used for 
advanced airway management by EMS during prehos-
pital advanced life support, instead of tracheal intuba-
tion. No other major changes in prehospital resuscitation 
practice were implemented during the study period. In 
2016, the municipality of Amsterdam had a population of 
833,624 inhabitants [26].

Data collection
This study used data collected by AmsteRdam Resuscita-
tion STudies (ARREST). ARREST is an ongoing prospec-
tive registry of all-cause OHCA in the Dutch province of 
North-Holland since 2005. The routine data collection, 
which includes data on the GPS location of the OHCA 
and data from dispatch centre, AEDs and emergency 
medical service (EMS) (including manual defibrilla-
tor data), and informed consent procedure is described 
extensively elsewhere [27, 28]. The ARREST data collec-
tion is approved by the Institutional Review Board of the 
Academic Medical Center of Amsterdam.

Missing GPS coordinates were derived from the 
OHCA addresses using Google Maps Platform API. 
Subsequently, GPS coordinates were converted to X 
and Y coordinates on the projected coordinate sys-
tem EPSG:28,992. Municipal boundaries in 2016 were 
obtained from geographic information system files pub-
lished by Kadaster and Central Bureau for Statistics 
(CBS) [29]. A case was considered to be in a residential 
area when the OHCA was located in or around a residen-
tial place (including nursing homes). A shockable initial 
rhythm was defined as ventricular fibrillation or ven-
tricular tachycardia, confirmed by an AED or a manual 
defibrillator of the EMS. Defibrillator connection time 
was defined as the time between initiation of the emer-
gency call and the first connection of either an AED or a 
manual defibrillator.

Statistical methods
We used a statistical smoothing technique called kernel 
density estimation (KDE) to analyse and visualise the 
incidence of OHCA and compare mortality across the 
study region. This subsection provides a brief introduc-
tion into the methods, with additional details available in 
Supplementary Material 1.

KDE puts a smoothing curve (kernel function) on top 
of each data point to estimate the underlying probabil-
ity density function of the data. A commonly used ker-
nel function is the normal kernel (Gaussian), which is 
centered at each data point and scaled by a bandwidth 
parameter that determines the degree of smoothing. The 
probability density function of the data can then be esti-
mated by calculating the sum of the contributions of all 
kernels at any point in the study region. This produces a 
smoothed-out estimate of the probability density func-
tion of the data, where areas with high density (i.e. many 
data points) have a large bump in the estimate, and areas 
with low density (i.e. few data points) have a smaller 
bump. KDE is well explained in Chacón and Duong’s 
book [30].

(1) Spatial distribution of OHCA incidence.
For the spatial analysis, we used a two-dimensional 

KDE model with normal kernels. We defined high inci-
dence areas as the smallest regions encompassing 20% 
of the total probability density, and these areas were 
indicated by contour lines in the visualisation. The spa-
tial analysis only requires coordinates of historic OHCA 
cases, which could be obtained from dispatch centres, 
EMS, VRS, or a cardiac arrest registry (like in this study, 
ARREST).

(2) Spatiotemporal distribution of OHCA incidence.
The spatiotemporal model extends the spatial model 

by incorporating a temporal dimension [31]. The tempo-
ral dimension was defined as time of day (00:00–24:00), 
which is circular like a clock (e.g. 21:00 and 01:00 are 
both be equally close to 23:00). To model this correctly, 
von Mises kernel was chosen to model the temporal 
dimension [32], which is an analogue to a normal distri-
bution on a circle. The spatiotemporal analysis requires 
coordinates and timestamp of OHCA, which could be 
obtained from the same source as the data for the spatial 
analysis.

(3) Spatial relative risk of mortality
Spatial relative risk can be used to compare the spatial 

distribution of non-survivors with the spatial distribution 
of survivors. We calculated the natural logarithm of the 
kernel density ratio, i.e. the ratio of estimated probabil-
ity density of non-survivors to survivors [33]. Areas of 
statistically significant high or low risk of mortality were 
indicated by contour lines at significance level of 5%, cal-
culated using R package sparr [34]. Identifying the high 
or low risk areas requires coordinates and binary survival 
outcome of OHCA.

Additionally, we conducted logistic regression analysis 
to examine the impact of basic case characteristics (age, 
sex, public location, witnessed, and shockable rhythm) on 
the survival differences between high and low-risk areas. 
Odd ratios and 95% confidence interval (95% CI) were 
calculated. Risk areas (low, neutral, high) were treated 
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as categorical variables, both with and without adjust-
ment for the aforementioned basic case characteristics. 
The reference group for high and low-risk areas were the 
OHCAs in the neutral-risk area.

Results
We applied our methods to a case study of Amsterdam. 
In total 3230 OHCAs with presumed cardiac cause were 
obtained from the ARREST database. After excluding 
cases with missing coordinates or survival outcome, 2901 

OHCAs remained as the study population, of which 20% 
survived after 30 days (Fig. 1). Results based on just the 
five most recent years of data (i.e. 2012–2016 instead of 
2006–2016) showed a similar picture and can be found in 
Supplementary Material 2.

Spatial distribution
Figure  2 shows the spatial distribution of OHCA inci-
dence. The high incidence areas are indicated by contour 
lines and occurred in the Amsterdam city centre and east 

Fig. 1 Flowchart of included and excluded out-of-hospital cardiac arrests, municipality of Amsterdam, 2006–2016. OHCA: out-of-hospital cardiac arrest, 
GPS: Global Positioning System
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and west of the city centre. In the high incidence areas 
historic OHCA incidence was 5.6 OHCA/km2/year, while 
outside those areas incidence was 1.07 OHCA/km2/year.

In addition to the high incidence areas, there were 
medium cluster of incidence (yellow/orange colour) 
northeast and south of the city centre, and in the south-
east part of Amsterdam.

Spatiotemporal distribution
Figure  3 shows slices of the spatiotemporal distribution 
at 04:00, 10:00, 16:00, and 22:00, indicating how the spa-
tial distribution changes over time of day. In the morn-
ing, at 04:00 and 10:00, incidences were more uniformly 
spread over the city compared to the afternoon (16:00) 
and evening (22:00). The overall incidence was relatively 
lower during the night and in the morning, but was not 
insignificant. The city centre became a hotspot in the 

afternoon. Supplementary Material 3 shows an anima-
tion of the spatial distribution over 24 h.

Spatial relative risk of mortality
We calculated the spatial relative risk estimate for mor-
tality after OHCA in Amsterdam (Fig.  4). The areas of 
interest are indicated by contour lines obtained by a two-
sided statistical test (α = 5%), with the (+) and (-) symbols 
referring to the sign of the estimate. The areas with low 
relative risk of mortality, indicated by (-) in Fig.  4, are 
referred to as high-survival areas, and the areas with high 
relative risk of mortality, indicated by (+), are referred to 
as low-survival areas. Areas which were classified as nei-
ther high- nor low-survival are referred to as neutral-sur-
vival areas.

The high-survival areas were mainly located in the city 
centre and south-east of the city centre. Low-survival 
areas could be found surrounding the city centre. A 

Fig. 2 Visualisation of out-of-hospital cardiac arrest incidence in Amsterdam. Spatial kernel density estimation of out-of-hospital cardiac arrest incidence 
in Amsterdam. The contour lines indicate high incidence areas, defined as the smallest total area that encompasses 20% of the total probability density. 
(Municipal boundaries: © Kadaster / Central Bureau for Statistics, 2018, CC BY-SA. Background: © OpenStreetMap contributors, CC BY-SA.)
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particularly intense low-survival area was located south 
of the city centre, spatially aligned with the residential 
area of a specific neighbourhood. In the disjoint south-
east part of the municipality, two low-survival areas 
could be seen, in addition to one high-survival area in 
which primarily businesses, stores, and a large football 
stadium are located.

A total of 432 (14.9%) and 562 (19.4%) cases occurred 
in the identified high- and low-survival areas, respec-
tively (Table 1). When comparing high- and low-survival 
areas, significant differences in 30-day survival were 

found in the whole study population (35.6% vs. 9.1%) and 
in the subset of the Utstein comparator group (witnessed 
arrests with shockable rhythm, 59.5% vs. 25.9%). Notably, 
there were differences in shockable initial rhythm, CPR 
before EMS and public location between the high- and 
low-survival areas. The difference in the AED connection 
rate was not statistically significant. However, for cases in 
which an AED was connected before EMS, it concerned 
a local AED in 32.7% of the cases in the high-survival 
areas, compared to only 5.1% of the cases in the low-sur-
vival areas.

Fig. 3 Visualisation of out-of-hospital cardiac arrest incidence in Amsterdam throughout the day. Spatiotemporal kernel density estimation of out-of-
hospital cardiac arrest incidence in Amsterdam. Panels A, B, C, & D show the spatial distribution at specific time points 04:00, 10:00, 16:00, and 22:00 h, 
respectively
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Table 1 Characteristics of out-of-hospital cardiac arrests in the high-, neutral-, and low-survival areas
Variables High-survival Neutral-survival Low-survival Total P
n 432 1907 562 2901

Median age (IQR) 63 (53–72) 66 (55–77) 70 (60–81) 67 (56–77) < 0.001

Male 81.3% (of 432) 67.5% (of 1907) 64.1% (of 562) 68.9% (of 2901) < 0.001

Public 58.8% (of 432) 24.0% (of 1906) 15.8% (of 562) 27.6% (of 2900) < 0.001

Witnessed 79.2% (of 423 ) 72.5% (of 1872) 70.1% (of 556) 73.0% (of 2851) 0.002

CPR before EMS 78.3% (of 414) 68.5% (of 1843) 66.4% (of 548) 69.6% (of 2805) < 0.001

AED before EMS 52.3% (of 432) 47.1% (of 1906) 48.4% (of 562) 48.1% (of 2900) 0.25

Local AED 32.7% (of 206) 13.3% (of 897) 5.1% (of 272) 14.8% (of 1395) < 0.001

Shockable initial rhythm 55.3% (of 409 ) 38.5% (of 1828) 32.0% (of 544) 39.7% (of 2781) < 0.001

30-day-survival 35.6% (of 432) 19.7% (of 1907) 9.1% (of 562) 20.0% (of 2901) < 0.001

30-day-survival (Utstein) 59.5% (of 205) 45.8% (of 609) 25.9% (of 147) 45.7% (of 961) < 0.001
Unknown or missing values were excluded for each variable separately and the numbers in parenthesis indicate the number of data points for each variable. CPR 
and AED rates reflect BLS and AED use before EMS arrival. Local AED refers to an on-site AED (instead of AEDs brought by first responders) and the corresponding 
value is defined only for the subgroup of cases where an AED is connected. 30-day survival is also given for the Utstein comparator group, i.e. witnessed arrests with 
shockable rhythm. All P-values except for age were obtained by a two proportion z-test comparing high and low-survival. P-value for age was obtained by a Kruskal-
Wallis test. CPR: cardiopulmonary resuscitation, AED: automatic external defibrillator 

Fig. 4 Spatial relative risk estimate of out-of-hospital cardiac arrest mortality in Amsterdam. Contour lines indicate areas of statistically significant high (+) 
or low (-) relative risk of mortality. Contour lines were obtained by a two-sided statistical test at significance level 5%. Note that the + and - symbols refer 
to the (log) spatial relative risk scores being either positive or negative values, and not to a desired outcome. (Municipal boundaries: © Kadaster / Central 
Bureau for Statistics, 2018, CC BY-SA. Background: © OpenStreetMap contributors, CC BY-SA.)
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The median time to defibrillator connection in high-
survival areas was 1:37 min shorter compared to low-sur-
vival areas (Table 2). The difference between the median 
time to shock was almost 2 min in favour of the high-sur-
vival areas.

To (partially) explain the differences in survival 
between the identified areas, we applied logistic regres-
sion on 30-day-survival. Cases with any missing value for 
the variables were excluded (n = 169). Without controlling 
for case characteristics, the odds of 30-day-survival in the 
high-survival area was 2.40 (95% CI 1.90–3.03, P < 0.001) 
times that of the survival in the neutral-survival area, 
whereas OR for the low-survival area is 0.36 (95% CI 
0.26–0.50, P < 0.001). Controlling for case characteristics, 
the adjusted OR for the high-survival area becomes 1.44 
(95% CI 1.08–1.92, P = 0.01) and adjusted OR for the low-
survival area becomes 0.41 (95% CI 0.28–0.58, P < 0.001).

Discussion
Key findings
This study used KDE-based models to investigate the spa-
tial distribution of OHCA incidence, the spatiotemporal 
distribution of OHCA incidence over time of day, and the 
spatial relative risk of survival. The methods are general-
izable to any city with OHCA data, but were applied to a 
case study of Amsterdam as an example.

From the spatial model we identified several high inci-
dence clusters, especially the city centre. The spatiotem-
poral model showed how incidence is distributed more 
evenly over the city during night and morning, whereas 
from afternoon onwards the city centre becomes the 
main hotspot. Using spatial relative risk, we were able 
to cluster OHCAs and identify multiple areas with sig-
nificant differences in 30-day survival, merely based on 
their geographical location and survival outcome. For the 
Utstein comparator subgroup, we observed a significant 
difference as well. After adjusting for basic case charac-
teristics (as defined in Sect. 2.3), the adjusted OR of the 
survival areas were still statistically significant.

Spatial relative risk
Possible explanations for the spatial differences in sur-
vival can be divided into two categories: case character-
istics are different (i.e. age, witnessed arrest, shockable 
rhythm, etc.) and/or treatment (CPR and AED use before 
EMS arrival, EMS treatment, hospital treatment, etc.) is 
different. Regarding case characteristics; numerous stud-
ies have linked age [35] and socioeconomic status [36, 37] 
with OHCA incidence and mortality. Our logistic regres-
sion analysis revealed that case characteristics could 
help explain difference in mortality, but only to a certain 
extend. Possibly, other differences in case characteristics 
like socio-economic status, can further explain spatial 
difference in mortality.

Differences in the performance of the chain of survival 
could help explain remaining differences in survival. 
We found a lower bystander defibrillation rate and local 
AED use in the low-survival areas (Table 1). Despite that 
AED connection rate before EMS arrival was not signifi-
cantly different in the high- and low-survival areas, the 
defibrillator connection time and time to first shock was 
approximately two minutes shorter in the high-survival 
areas compared to the low- and neutral-survival areas 
(Table 2).

Repeating the spatial relative risk analysis using only 
the most recent 5 years of data (2012–2016) yielded 
results akin to those obtained using the complete 11-year 
dataset (see supplemental materials). The survival dis-
parity remained approximately the same, as did the pro-
portion of data points in the low and high survival areas. 
This result is consistent with the observation that there 
were only small fluctuations in yearly survival rates in 
Amsterdam,

Implications for the chain of survival
The spatial analysis methods based on KDE can provide 
valuable information on areas that need improvement in 
resuscitation attempts. We observed that OHCA cases in 
low-survival areas were mainly residential with an AED 
connection rate similar to the other identified areas, but 
with longer connection and shock times. Efforts should 
be made to further increase CPR before EMS arrival and 

Table 2 Defibrillator connection time and time to first shock of out-of-hospital cardiac arrests in the high-, neutral-, and low-survival 
areas
Variables High-survival Neutral-survival Low-survival P
Defibrillator connection time (min) n 370 1700 504

Mean 08:21 09:40 10:06 < 0.001

Median (IQR) 07:41 (05:54 − 10:06) 09:02 (07:00–11:45) 09:17 (07:10–11:53)

Time to first shock (min) n 203 652 156

Mean 08:25 09:49 10:28 < 0.001

Median (IQR) 07:49 (05:56 − 10:13) 09:09 (07:04–11:41) 09:43 (07:12–12:24)
Defibrillator connection time is retrieved from either a connected automatic external defibrillator or from the manual defibrillator of the Emergency Medical Service. 
Values exceeding 30 min were excluded from analysis in this table. P-values were obtained by a Kruskal-Wallis test.
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achieve faster defibrillation. It is notable that during the 
study period, unlike a major part of the Netherlands, 
a VRS was not yet used in Amsterdam, which could 
improve time-to-defibrillation, particularly in the low-
survival areas.

The low-survival areas may be targeted with specific 
interventions to improve health outcomes. Current AED 
coverage, including temporal accessibility (and pos-
sibly signage [38]), should be evaluated first. A simple 
approach could be to evaluate AED density per km2 [11], 
and to consider placing more AEDs in the areas with low 
AED density, though placing AEDs at the right location 
would remain as a challenge. To that purpose, the spatial 
and spatiotemporal models can serve as input for mathe-
matical models for strategic AED placement. These mod-
els also give information on the performance of existing 
AEDs and the marginal benefit of positioning additional 
AEDs. Similarly, the models presented in this paper can 
serve as input to ambulance location and allocation mod-
els which aim to place ambulances in high risk areas to 
decrease response time.

In addition to deploying AEDs and implementing a 
VRS, the volunteer responder density should be evalu-
ated. A recent study recommended a density of > 10 
available volunteers per km2 in residential areas [11]. 
Allocating funds to organize local awareness campaigns 
or to reimburse resuscitation courses may be more 
impactful than purchasing additional AEDs. After all, 
AEDs must be retrieved and connected by trained volun-
teer responders.

Furthermore, when deciding which areas to target, it is 
worth considering different levels of significance of the 
statistical test depending on available budget, cost, and 
scalability of the intervention. Increasing the significance 
level α of the statistical test increases the surface area of 
the high- and low-survival areas. If resources are lim-
ited, one could instead first try lower α to target (smaller) 
areas with the highest risk of mortality.

Lastly, the models presented in this paper are gener-
alizable to any city or region, but the analyses require 
access to an OHCA registry with at least a few years of 
OHCA data with location and time information, which 
is not commonly available. The proposed spatial relative 
risk analysis also requires survival outcome and prefer-
ably case characteristics. Nevertheless, nowadays, loca-
tions and timestamps may be more easily obtained from 
smartphone apps that dispatch community volunteers 
(e.g. HartslagNu, GoodSAM, PulsePoint).

KDE compared to other spatial analysis methods
Previous studies that analysed spatial or spatiotemporal 
OHCA risk used models that aggregate data into spatial 
cells [17–25, 39]. Spatial analysis methods, such as the 
Getis-Ord Gi* statistic, were used to identify high-risk 

census tracts [17–19]. Another common approach was 
to use a Bayesian model with parameters for spatial and 
temporal heterogeneity, space-time interactions, and 
demographic covariates [20–24]. It is clear that the way 
in which spatial cells are defined impacts or limits the 
analyses and results.

A major advantage of KDE is that it is a continuous 
estimate and does not require delimitation of the study 
region into spatial cells. Therefore, the boundaries of the 
said spatial cells or administrative areas do not restrict 
the analysis or influence the results. Additionally, dis-
crete models assume uniform incidence throughout spa-
tial cells and therefore may result in abrupt transitions 
between and around the borders of these cells. The scope 
of possible analyses using KDE is flexible, as it can be 
done on a country, province, city, or even district level, 
without requiring population data on that scope.

Limitations
Survival data for OHCAs is inherently imbalanced. In our 
case, 30-day survival of 20.0% is relatively high compared 
to other countries. If survival is extremely low, like < 5%, 
then the spatial relative risk method may not be accurate, 
since there are too few data points of patients who sur-
vived. However, if survival is that low, the spatial distri-
bution alone already provides sufficient insights.

A spatial plot (i.e. Figure  2) provides additional con-
text for the spatial relative risk analysis, giving additional 
insight into the overall incidence in that vicinity and thus 
the importance of that finding. The spatial relative risk 
analysis does not consider the overall incidence. This 
means that an area can be identified as low (or high) sur-
vival but may locally have relatively few data points. For 
example, the two north-west clusters with contour lines 
near the boundary in Fig. 4 represent only a few isolated 
points, thus indicating low importance. Therefore, results 
from the spatial relative risk model should be interpreted 
with the spatial distribution in mind.

Future directions
First, a study further investigating the cause of severe 
disparity in survival outcomes may prove useful. After 
adjusting for case characteristics, the OR of the survival 
areas were still far from 1 and statistically significant, 
indicating that we cannot fully explain survival (differ-
ences) with just the case characteristics. A more com-
prehensive approach taking for example comorbidities, 
socioeconomic status, local stakeholders and local public 
health experts’ knowledge into account may be necessary 
to understand the underlying reasons for differences in 
survival. Second, analysing and modelling spatiotemporal 
volunteer responder availability would be valuable to fur-
ther improve the chain of survival. Third, our results sup-
port the development of a dashboard to monitor regional 
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OHCA incidence and care and to identify where addi-
tional effort can be made to improve public health. Lastly, 
the Dutch VRS was implemented in Amsterdam in 2019, 
so prospective data can help direct further improvements 
and assess impact on survival.

Conclusions
KDE is useful to identify areas of interest regarding spa-
tial OHCA incidence, spatiotemporal OHCA incidence, 
and spatial relative risk of OHCA mortality. Further 
causal analysis and engagement with local stakeholders 
and public health experts are the next steps in under-
standing disparities in survival between geographical 
areas. Results motivate where additional public health 
efforts to improve resuscitation attempts should be 
focused.
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